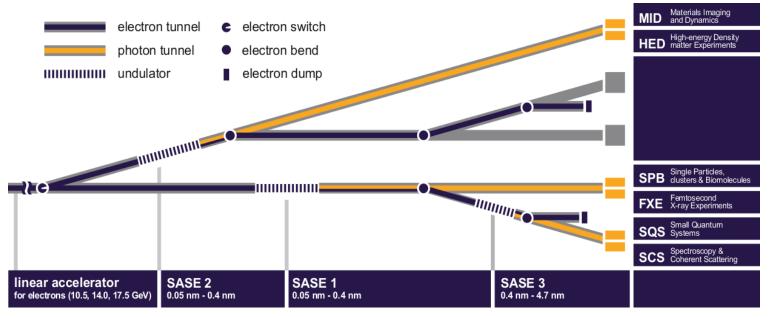




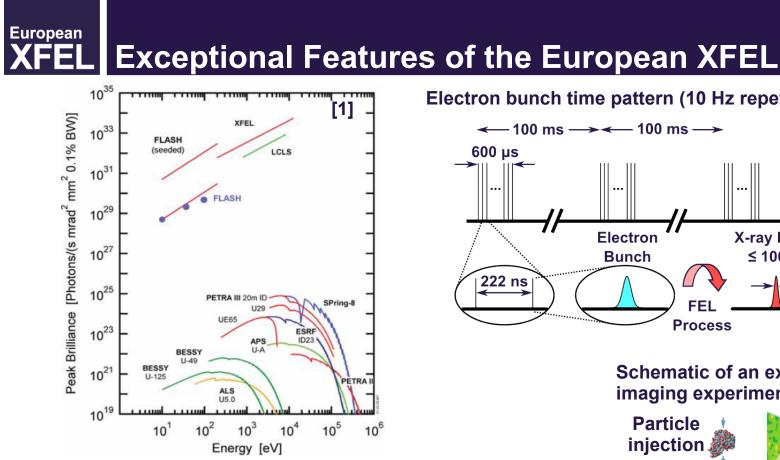
X-Ray Detector Simulation Pipelines for the European XFEL

<u>T. Rüter</u>, S. Hauf, M. Kuster, A. Joy, R. Ayers, M. Wing, C. H. Yoon, A. Mancuso


XFEL The European X-ray Free Electron Laser

- Driven by superconducting
 LINAC located in Hamburg, Germany
- Three photon paths service six experimental stations located in Schenefeld
- Photon energy ranges from
 0.25 25.0 keV (minimum wavelength: 0.05 nm)

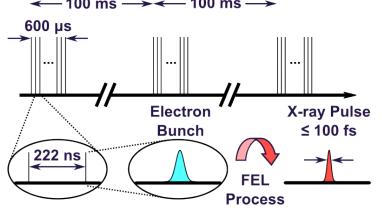
Location in Hamburg, Germany



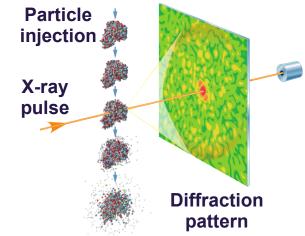
Experimental stations at the European XFEL

2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

Images publicly available at www.xfel.eu


X-Ray Detector Simulation Pipelines for the European XFEL

- Photon beam properties
 - Experiments can use **coherence** property of X-ray photons
 - High photon flux: up to **10¹³ photons per pulse**

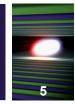

Unique time structure

- 2700 electron bunches (200 ns seperation) produce 100 fs X-ray pulses
- Allows study of dynamic processes (e.g. chemical reactions)

Electron bunch time pattern (10 Hz repetition) [1]

Schematic of an exemplary imaging experiment:

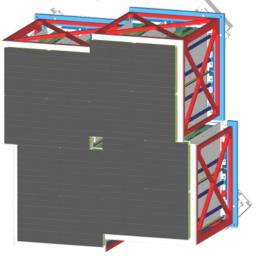
X-Ray Detector Simulation Pipelines for the European XFEL


XFEL Detectors for XFEL Instruments

Gotthard V2 **FastCCD** AGIPD Single Particles, **Clusters and Biomolecules (SPB)** SASE Gotthard V2 AGIPD keV Materials Imaging & **Dynamics (MID)** 25 Gotthard V2 Gotthard V1 LPD Femtosecond X-ray 3 5 **Experiments (FXE)** SASE 2. Gotthard V2 **High Energy Density** Matter (HED) DSSC MCP **FastCCD** 3 keV **Small Quantum** Systems (SQS) SASE 26 – 3 | DSSC **FastCCD** MCP⁵ pnCCD 0.26 **Spectroscopy and Coherent** Scattering (SCS)

2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

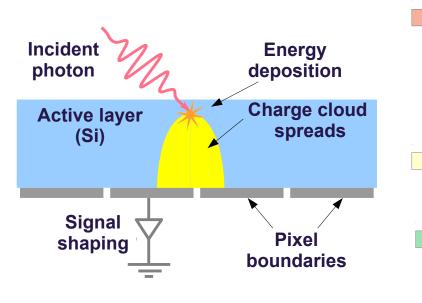
Slide from internal resources


XFEL Motivation and Requirements

Use cases

- Estimate detector performance
- Aid in planning of experiments and analyzing results
- As drop-in for real detector in processing/analysis pipelines
- Provide an agile simulation environment for the various X-ray detectors at XFEL
 - Extends A. Joy's X-ray Camera Simulation Toolkit
 - Accounts for the variety of semiconductor X-ray detectors
 - Modular physics simulations, separated into three sub-simulations

CAD rendering of the LPD Detector


	LPD	AGIPD	DSSC	pnCCD	FastCCD
Pixels [µm] (Shape)	500 (square)	200 (square)	204 (hexagonal)	75 (square)	30 (square)
Dynamic range	1x10⁵ at 12 keV	1x10⁴ at 12 keV	3x10³ at 1 keV, 1x10⁴ at >1keV	1x10 ³ at 2keV; dE: 130eV at 5.9keV	1x10 ³ at 500eV, dE: 400eV at 5keV
Total size [px]	1024 x 1024	1024 x 1024	1024 x 1024	200 x 128	1960 x 960
E _{ph} [keV]	1 - 24	3 - 13	0.5 - 6	0.1 - 15	0.25 - 6
Application	Integrating de	etector (e.g. SPE	8, MID, SCS)	+ Spectroscopic	photon counting

2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

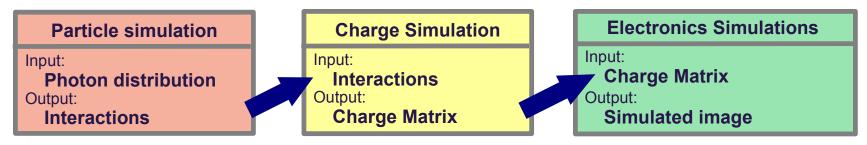
Thanks to Matthew Hart of the LPD consortium for providing the LPD rendering

XFEL Detector Simulation Layout

Divide the radiation detection process into three stages:

X-ray/matter interaction

- Energy deposition in the detector material
- Based on Geant4 v10.0, using Livermore models based on Evaluated Photon Data Library (EPDL)
- Validation for previous versions exist (Pia + Batij et al., nano5, 2009, ..., 2015)


Charge carrier transport

- Drift due to bias voltage, lateral diffusion
- Carriers accumulate to a measurable signal

Detector electronics

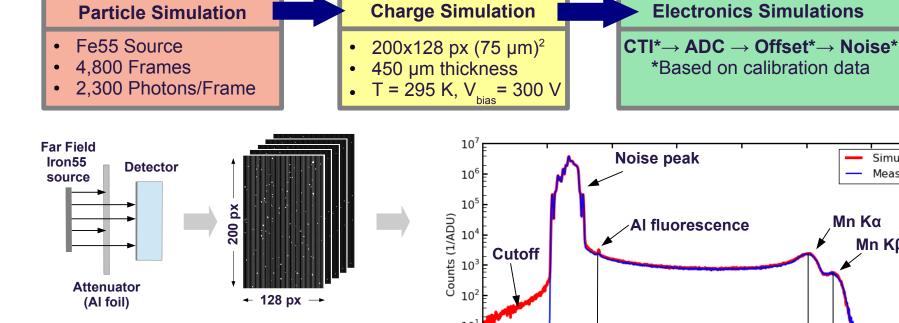
- Amplify and shape the signal Electronics Simulation
- Phenomenological approach

Independent simulations run in so-called devices on the computing framework of EuXFEL. Together they form a **X-ray Detector Simulation Pipeline**.

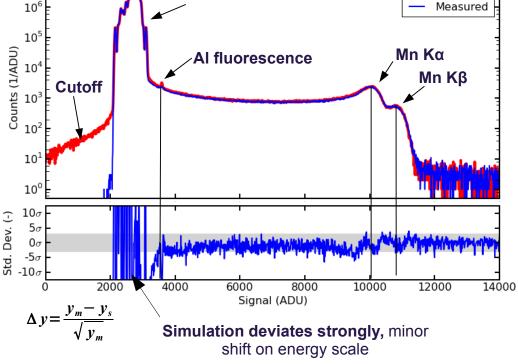
2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

XFEL Geometry Modeling

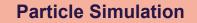
A software tool to convert CAD drawings to Geant4 geometries has been devoped:


- Convert CAD step files to GDML (Geant4)
- Interface to specify materials
- Built with Qt4 and based on pythonOCC^[1], a python wrapper of the openCascade^[2] library
- [1] http://www.pythonocc.org/[2] http://www.opencascade.org/

X-Ray Detector Simulation Pipelines for the European XFEL

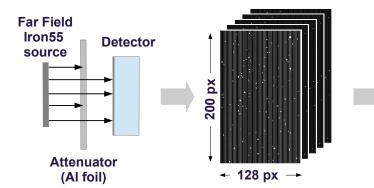

European Initial Validation: pnCCD Flat Field Measurements XFEL

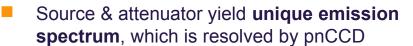
Simulated


- Source & attenuator yield unique emission spectrum, which is resolved by pnCCD
- In addition: dark image datasets show effects of the detector electronics & read-out
- Raw, uncorrected spectra, not normalized 3σ agreement simulation and measurement
- Prominent spectral features coincide
- Deviations in the Noise peak

X-Ray Detector Simulation Pipelines for the European XFEL

XFEL Initial Validation: pnCCD Flat Field Measurements

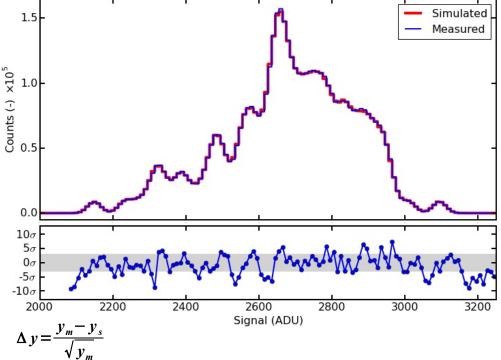

2,300 Photons/Frame

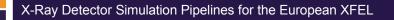

Fe55 Source

4.800 Frames

Charge Simulation

- 200x128 px (75 µm)²
 450 µm thickness
- $T = 295 \text{ K}, V_{\text{bias}} = 300 \text{ V}$
- I = 295 K, V

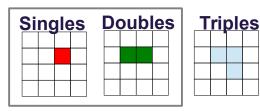

- In addition: **dark image datasets** show effects of the detector electronics & read-out
- Raw, uncorrected spectra, not normalized
 3σ agreement simulation and measurement
- Prominent spectral features coincide
- Deviations in the Noise peak

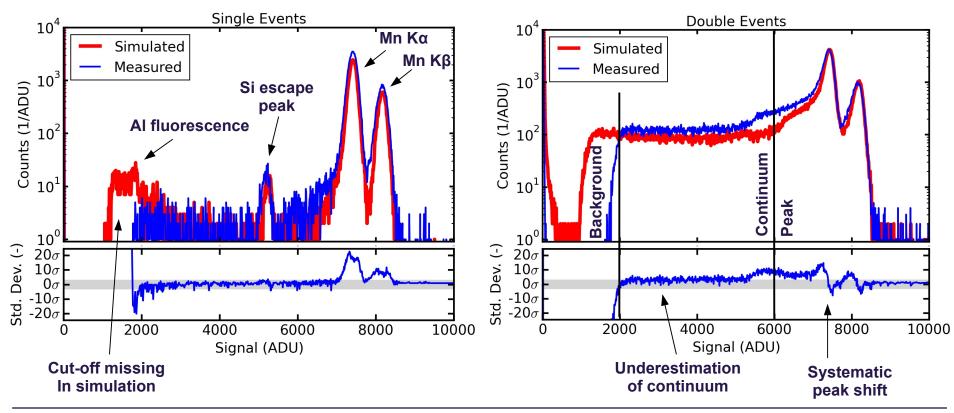


Electronics Simulations

CTI*→ ADC → Offset*→ Noise*

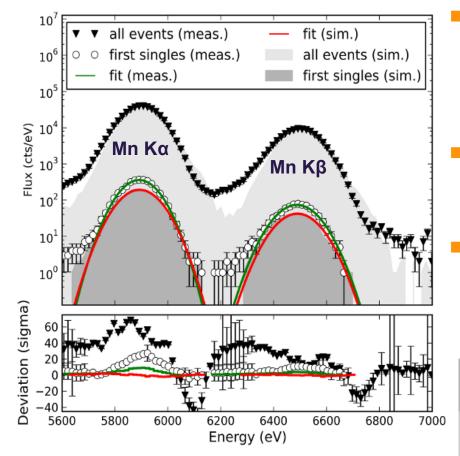
*Based on calibration data





XFEL Charge Simulation Validation: Event Patterns

- Classification of Events by Multiplicity (Singles, Doubles, ..) considers charge splitting effects
- Data after offset & common mode correction
- Qualitative features match, quantitative disagreement in event numbers
- Current charge cloud model leads to underestimation → more validation measurements at APS beam time next week

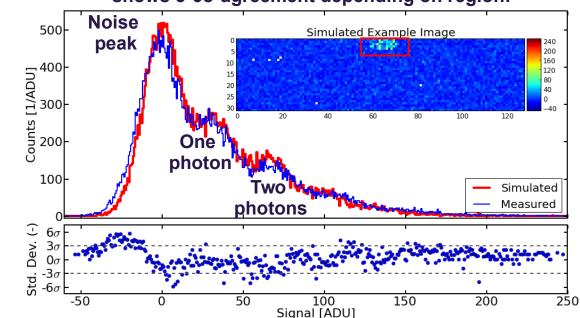

Quads							
		-					

Fowler et. al, Nucl. Instr. Meth. Phys. Res. A 450 (2000) 75-87

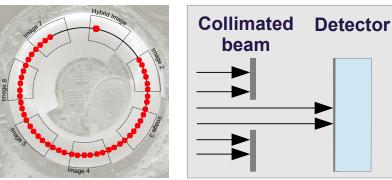
XFEL Histograms of the Corrected Raw Data

Results published in [9]: A. Joy, M. Wing, S. Hauf, M. Kuster, T. Rüter X-CSIT: A Toolkit for Simulating 2D Pixel Detectors. *Journal of Instrumentation*, 10(C04022), 2015

- Event pattern analysis: Charge simulation requires further investigation
- Simulation has fewer counts in continuum region
- Peaks **shift towards higher signal levels** in the simulation
- Charge cloud shape/diameter underestimated
- Detector calibration
- Emission spectrum and linear fit of corrected raw data yields **detector gain**
- Peak fits give further indicators of simulation quality
- Correction and calibration allows comparison with literature values
- Overall good agreement in peak energies
- Mismatch in peak widths: related to noise
- Mismatch in peak tails: related to split events

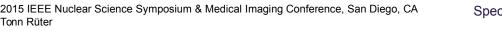

Peak		Simulated [eV]	Measured [eV]	rel. Dev.	XDB ^[7] [eV]
Mn Kα	Position	5893±3	5891±3	0.0002	5895.02
	FWHM	152±1	141±1	0.0688	
Mn Kβ	Position	6490±4	6488±3	0.0003	6490.45
	FWHM	159±2	158±2	0.0056	

X-Ray Detector Simulation Pipelines for the European XFEL

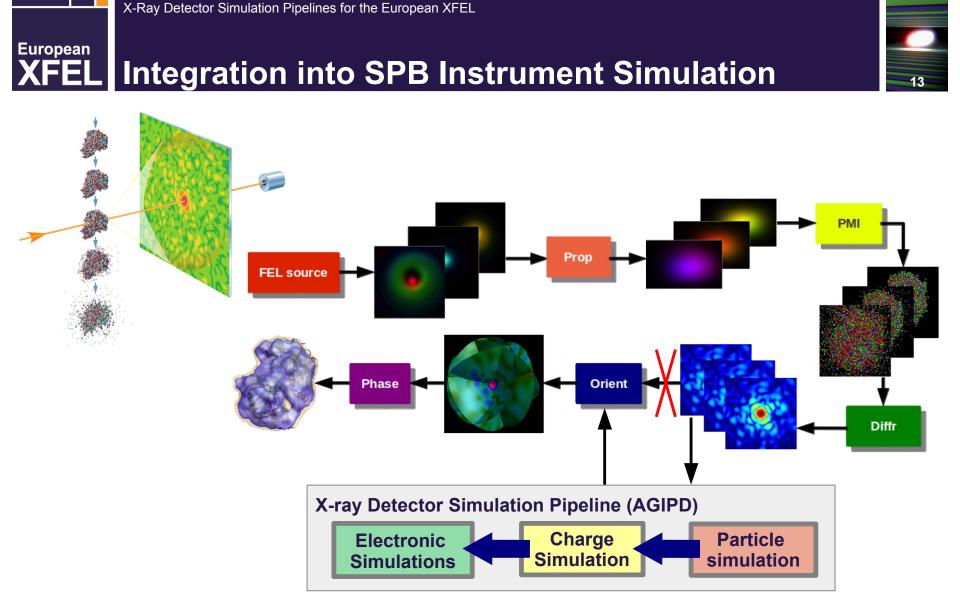

European Simulating Megapixel Detectors for XFEL XFEL

LPD Measurements at Diamond Synchrotron

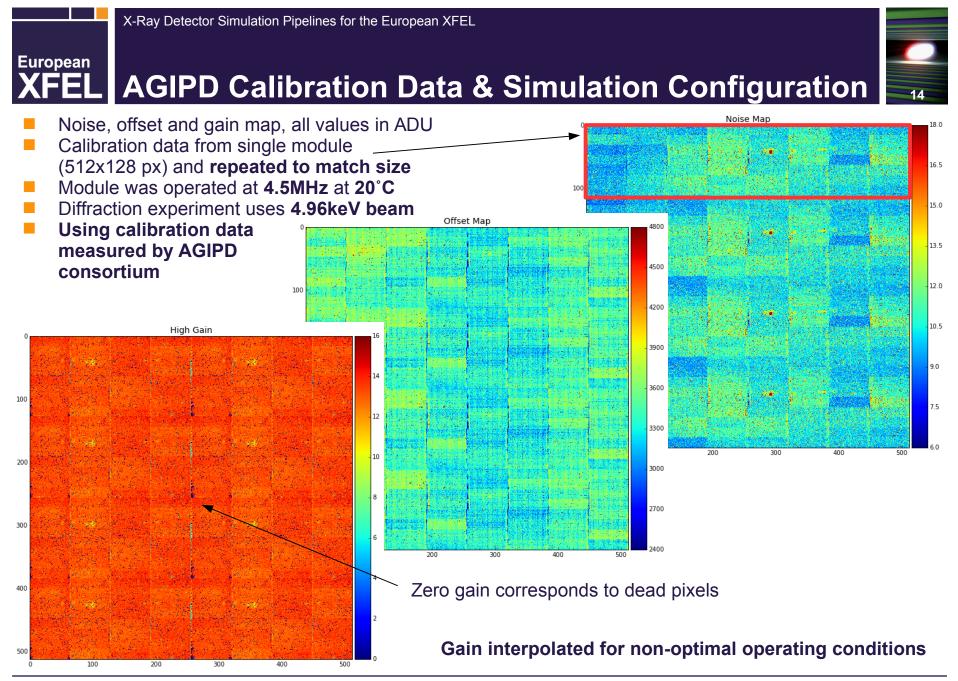
- Monochromatic, attenuated & collimated partial beam (18keV in Hybrid Mode)
- Measured: 500 Frames (from single memory cell)
- Simulated: 500 Frames with 150 Photons each
- Electronics: ADC, Offset, Noise, Common Mode



Comparison of measured and simulated data shows 3-6σ agreement depending on region:



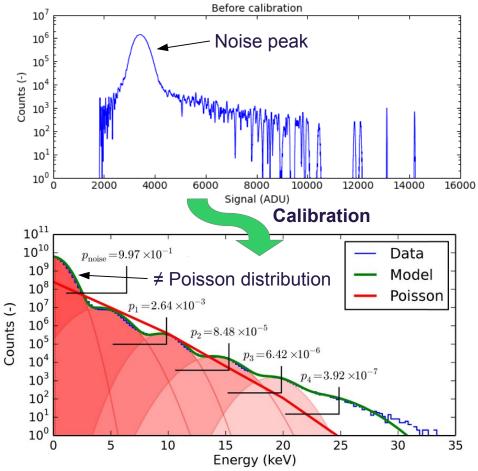
LPD supermodule equipped with 3 tiles



Tonn Rüter

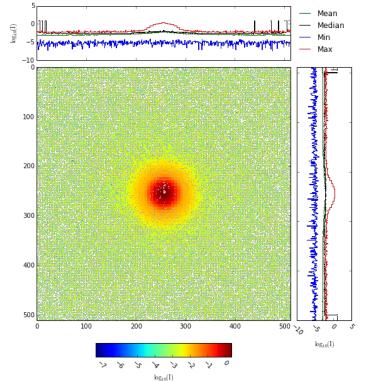
In preparation: C. H. Yoon et. al. *simS2E: A multi-physics framework for modelling a complete single particle imaging experiment at an X-ray Free Electron Laser*

2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter


Thanks to J. Sztuk-Dambietz and the AGIPD consortium for providing the data

X-Ray Detector Simulation Pipelines for the European XFEL

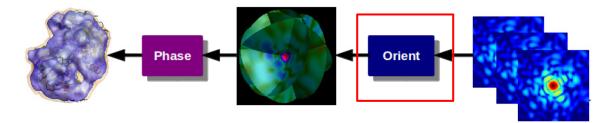
XFEL AGIPD Simulation of 2NIP: Initial Results


- 2NIP: Nitrogenase iron protein
- Computed for 200,000 frames using PyDetLib

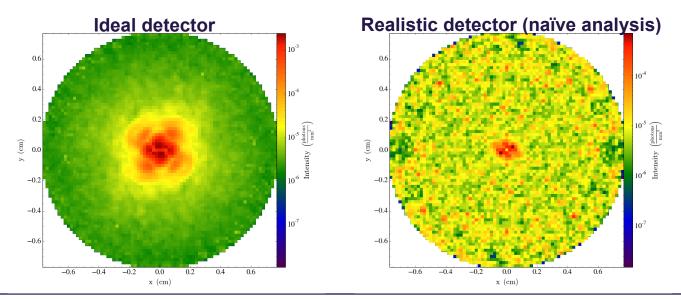
Spectra before and after calibration

2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

Mean image after calibration (dead pixels are masked, log scale)

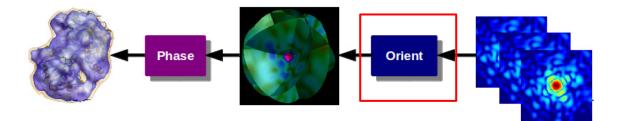

Problem: Peak separation 4δ but at 0.25 Mpixel still ~ 100 false positives if single photons to be included \rightarrow Events best given as probabilities.

$$p'_{k} = k p_{k} / \sum_{i=0}^{N} p_{i}$$
 $p_{k}(x) = A_{k} \exp(-\frac{(x-\mu_{k})^{2}}{2\sigma_{k}^{2}})$

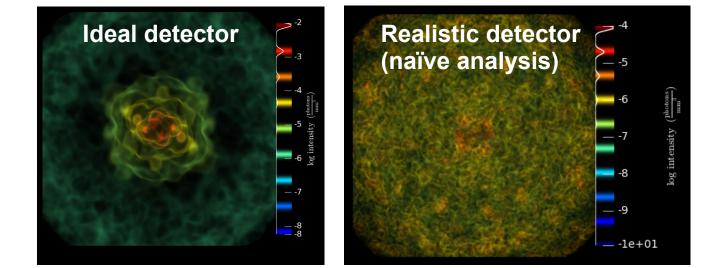


Simulated images are random orientations of 2NIP particles → for reconstruction need to be oriented using EMC (Expand – Maximize – Compress) algorithm (Elser & Loh, 2009)

EMC assumes photon intensity at each point of diffraction volume is Poisson-distributed → allows for shot noise, doesn't like false positives.

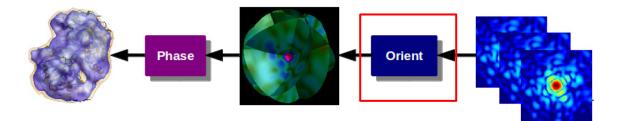


Maximum density slices through diffraction volume


2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

Simulated images are random orientations of 2NIP particles → for reconstruction need to be oriented using EMC (Expand – Maximize – Compress) algorithm (Elser & Loh, 2009)

■ EMC assumes photon intensity at each point of diffraction volume is Poisson-distributed → allows for shot noise, doesn't like false positives.



Diffraction volume (log. intensity)


2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Diego, CA Tonn Rüter

Simulated images are random orientations of 2NIP particles → for reconstruction need to be oriented using EMC (Expand – Maximize – Compress) algorithm (Elser & Loh, 2009)

■ EMC assumes photon intensity at each point of diffraction volume is Poisson-distributed → allows for shot noise, doesn't like false positives.

Diffraction volume (log. intensity)

EuropeanXFELConclusion & Outlook

- Drop-in detector simulation environment is available in EuXFEL's computing framework
- Conducted successful initial tests for two detector systems
 - pnCCD: Simulation reproduces essential features of data from flat field measurement
 - 3σ agreement between measured and simulated attenuated Fe55 spectra
 - Shortcomings in split charge continuum
 - Testbed for further investigations: Small pixel size (75 μm) allows investigation of charge sharing effects
 - LPD: Low photon regime resolved with 3-6 σ agreement
- X-ray Detector Simulation Pipeline employed in start-to-end simulation of experiment end station
 - Noticeable divergence from ideal detector → exploring experimental limits requires realistic detector model
 - Simulated scenario at low end of AGIPD specification (high T, low Eph)
 - Does advanced data preprocessing before EMC help?

Outlook

- Develop towards user-accessible tool
- Further study detector effects (roll, tilt, electronic settings)