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Factorization theorem

Let us start with the basic recipe for calculating the cross-section for hadroproduction of a certain final state (involving

QCD):

• Use your favorite method of dealing with Feynman diagrams to calculate the process of interest (quarks, gluons

going into the process, resulting in final state X) @LO,@NLO, whatever perturbative level you can manage.

• Apply some phase space integration to get the parton-level (hard) cross-section σ̂ab→X .

• In experiments one does not collide partons but hadrons, thus multiply the result with the probabilities to get

partons of certain flavor i and energy fraction ξ from the parent hadron I at a certain energy scale µF : parton

distribution functions fi/I(ξi, µF), fitted from experimental data, freely available (MRST, CTEQ. . . ) . Feel free to

integrate again over left-over parameters.

Given as a formula, one would produce:

σAB→X =
∑

a,b

fa/A ⊗ σ̂ab→X ⊗ fb/B =
∑

a,b

∫

dξa

ξa

∫

dξb

ξb
fa/A(ξa, µF ) fb/B(ξb, µF ) σ̂ab→X(ξa, ξb, µF . . .),

also commonly known as the Factorization Theorem.

• The incoming partons a, b are generally treated as massless.

• There is however a problem with this method, it’s not really correct. . .
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Factorization theorem cont’d

The point is, one needs to take the Factorization Theorem seriously:

• The hard (parton-level) cross-section σ̂ab→X really needs to be hard (short-distance,high-energy) in every respect.

• All the soft (long-distance, low-energy) effects are formally swallowed by the PDFs fi/I(ξi, µF).

• The factorization scale µF sets the dividing limit.

• The perturbative calculation (Feynman diagrams) is by its

method not necessarily hard. While one can formally remove

most of the possible divergencies in the perturbative calculation

(IR vs UV cancellation etc) the long-distance effects show up as

mass/collinear divergencies in form of logs αs log(µ2
F/m2).

PA PB

g
s

H

H̄ X

fg/A
fs/B

σ̂

T
T
T
T
T
T
T
TT

T
T
T
T
T
T
T
TT

µF − dµF

µF

• Such cases must be removed from the hard cross-section and moved to the PDFs fi/I(ξi, µF).

• This is also what the DGLAP equations tell you:

d

d ln µ2
F

fi/I(z, µF ) =
αs(µF )

2π

∑

j

1
∫

z

dξ

ξ
Pj→i(

z

ξ
, αs(µF )) fj/I(ξ, µF ).
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Factorization theorem cont’d

So let’s see how this would work in an example: Let us assume you have a gluon entering your perturbative calculation,

which then splits to a quark pair g → HH̄ . Stipulating, that the (hard/soft) scale µ is set by the heavy quark

propagator (alternatively, pT of the spectator is possible):

• If the scale is hard enough µ > µF , the perturbative calculation is ok.

• if the scale is soft µ < µF , one should remove such an occurrence from the calculation and use an incoming quark

H in the corrected/alternative calculation.

PA
PB

g s

H̄
X

fg/A fs/B

σ(n+1)

⊕
PA PB

H s

X

fH/A fs/B

σ(n)

⊖
PA PB

g
s

H

H̄ X

fg/A
fs/B

f
(1)
H/g

σ(n)

Summing this up one thus gets three contributions to the total cross-section:

• The perturbatively calculated process one started with:

σAB→XH̄ = fg/A ⊗ σ̂
(n+1)

gs→XH̄
⊗ fs/B .

• Process an order lower in αs but with an incoming quark H:

σAB→X = fH/A ⊗ σ̂
(n)
Hs→X ⊗ fs/B .

• An appropriate subtraction contribution σsubt the form of which needs to be determined.
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Short derivation of the subtraction terms:

The appropriate subtraction terms can actually be derived from the factorization theorem itself by using DGLAP at the

parton level and doing power counting of αs (there are other ways like formal MS in D dimensions):

• The pQCD cross-section σab→X involving initial state partons a, b is subject to the same factorization theorem:

σab→X =
∑

c,d

fc/a ⊗ σ̂cd→X ⊗ fd/b,

• At zero-th order in αs (0 = lowest possible order):

f
(0)
i/j (ξ) = δi

jδ(ξ − 1)

• and hence:

σ
(0)
ab→X = σ̂

(0)
ab→X .

Subsequently, at first order in αs recursively from DGLAP:

fi/j(ξ) = f
(0)
i/j (ξ) + f

(1)
i/j (ξ) = f

(0)
i/j (ξ) +

αs(µF )

2π
P

(0)
j→i(ξ) ln

(

µ2
F

m2

)

,

• and thus at this order:

σ
(1)
ab→X = σ̂

(1)
ab→X +

∑

c

f
(1)
c/a ⊗ σ̂

(0)
cb→X +

∑

d

σ̂
(0)
ad→X ⊗ f

(1)
d/b,



Borut Paul Keřsevan AcerMC. . . 6

• The last equation can thus be inverted to give:

σ̂
(1)
ab→X = σ

(1)
ab→X −

∑

c

f
(1)
c/a ⊗ σ̂

(0)
cb→X −

∑

d

σ̂
(0)
ad→X ⊗ f

(1)
d/b,

• Putting it back into the factorization theorem expression:

σAB→X = σ
(0)
AB→X + σ

(1)
AB→X − σsubt

AB→X,

• with the subtraction terms given by:

σsubt
AB→X =

∑

a,b

fa/A ⊗
∑

c

f
(1)
c/a ⊗ σ̂

(0)
cb→X ⊗ fb/B +

∑

a,b

fa/A ⊗
∑

d

σ̂
(0)
ad→X ⊗ f

(1)
d/b ⊗ fb/B.

PA PB

pa pb

X

fa/A fb/B

Hab

+

PA PB

pa
pb

pc

pc̄

X - c̄

fa/A
fb/B

fc/a

Hcb

+

PA PB

pa pb

pd

pd̄

X - d̄

fa/A fb/B

Had

fd/b

Other approaches can give slightly different subtraction terms however this one has certain advantages as will be shown.
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Meeting the Experimental Requirements (not really a digression)

• While experimentalists might be thankful for accurate total cross-section predictions what they really need are

simulated events which amounts to fully differential cross-sections.

• Furthermore, they are not interested in inclusive final states (X) but rather exclusive occurrences (e.g. observing

a quark H at a certain pT/energy. . . )

How can we simulate an (part)exclusive final state, e.g. X + H?

• Generating events from pQCD model involving H in the final state, pro-

duced e.g. in gluon splits like in our test case.

• Or Pick a specific (back) evolution to gluon from a process with incoming

H, the probability to obtain an additional H̄ at a certain energy/scale/pT

= µ is given through the Sudakov exponent (commonly known as parton

showering):

Sa = exp











−
µ2

F
∫

µ2

dµ′2

µ′2
αs(µ

′2)

2π
×

∑

c

1
∫

ξc

dz

z
Pa→c(z)

fa/I(
ξc

z
, µ′2)

fc/I(ξc, µ′2)











.

• The latter procedure accurate in the collinear region (no divergencies)

by construction (resummation). By definition the evolution variable µ

is limited by µF from above.

PA PB

g
s

H

H̄ X

fg/A
fs/B

dSH/g

σ̂
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Parton Showering vs. Matrix Elements (pQCD)

There are two down-sides to this procedure:

• The first approach needs a subtraction term (on an event-by-event basis).

• The second approach leads to the same final state thus it double-counts the first one at least in a certain region

of phase space.

• However these two deficiencies can be made to cancel each other out.

• There are several ways of doing this, generally one needs to tune the shower evolution variable µ to match the

scales/virtualities in pQCD calculation (also previously marked µ on purpose) and applying suitable kinematic

mappings (generally a hard task).

• In our approach we adapted and generalized the prescription suggested by Collins et al [hep-ph/0110257,hep-

ph/0001040,hep-ph/0105291] where they have derived a consistent procedure of combining a few select processes

(e.g. the Drell-Yan qq̄ → Z with gq → Z q), always/only for gluons splits in the initial state at Born/tree

level: The flip side is that ’consistent’ means the method reproduces the Compton part of the NLO differential

cross-section exactly, by paper calculation.
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Parton Showering vs. Matrix Elements (pQCD) cont’d

Let us see how this works:

• The fully differential parton-showered differential cross-section is given by:

dσAB→XH̄ = dSg→H(µ) fH/A(µF ) dσ̂
(n)
Hs→X fs/B(µF ) ,

• And our derived subtraction term is:

dσsubt = fg/A(µF ) df
(1)
H/g(µ) dσ̂

(n)
Hs→X fs/B(µF ) .

• Taking the limit µ → µF one quickly sees that:

dSg→H(µ) fH/A(µF ) µ → µF−−−−−→ fg/A(µF )
αs(µF )

2π
Pg→HdΦ

fg/A(µF ) df
(1)
H/g(µ) µ → µF−−−−−→ fg/A(µF )

αs(µF )

2π
Pg→HdΦ,

with dΦ denoting all the variables in the differential.

• In this limit µ → µF the two terms thus cancel on paper, i.e. exactly.

• In the other (collinear µ → mH) limit the subtraction term cancels its parent expression by construction.

• The subtraction term is thus supposed to interpolate between the two contributions while removing the overlap (double

counting), resulting in a smooth combination of the two approaches.
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Parton Showering vs. Matrix Elements (pQCD) cont’d

• This procedure requires a specific form of parton showering and kinematic transforms which leads to the corollary that

subsequently the PDFs for quarks need to be modified [hep-ph/0204127] (the subtraction procedure is formally not

equal to standard subtraction schemes like MS).

• In order to match the derived prescription with the explicit MS NLO result for Z + jet production on paper new PDFs

need to be defined:

z fJCC
i/I (z, µ2) = z fMS

i/I (z, µ2)

+
αs(µ

2)

2π

1
∫

z

dξ
z

ξ
fMS

g/I (ξ, µ2)

[

Pg→īi(
z

ξ
) ln

(

1 − z

ξ

)

+
z

ξ

(

1 − z

ξ

)]

+ O(first-order quark terms) + O(α2
s)

• This simple form is particular to the proscribed kinematic mapping/showering, it is not general!

• Side comment: This means that the discussion of NLO vs LO PDFs for showering is actually more complicated.

• These new distributions can in a reasonably straightforward manner be obtained by numerical integration using

e.g. CTEQ functions as input.
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Massive Partons in the Initial states

• The second point is the treatment of quark masses of initial state partons:

• All the partons in ’usual’ NLO calculations are generally treated as massless.

• This becomes a conceptual problem in case of gluon splitting to heavy partons like b or c quarks.

• The heavy partons in the final state need to have masses to accurately describe the observable jet kinematics.

• the ACOT (M. A. G. Aivazis, J. C. Collins, F. I. Olness and W. K. Tung) [hep-ph/9312318,hep-ph/9312319]

and many derived papers provide a method of incorporating the massive quarks into the Factorization Theorem

(actually done for DIS and c quark). There is a lot of work done on this, for the impact on LHC have a look at

[hep-ph/9712494] and papers citing it.

• We tried to merge this method with the Collins’ method and applied it to a few LHC-related cases.

• The method takes us back to basics of the treatment of masses in the factorization theorem:

• The factorization theorem is actually derived using the light-cone coordinates pµ = (p+, ~pT , p−) where p± =
1√
2
(p0 ± p3), which can incorporate particle masses.

• This translates to modified kinematics in factorization w.r.t. massless: pa = (p+
a ,~0T , p−a ) = (ξaP

+
A ,~0T , m2

a

2ξaP
+

A

) and

pb = (p+
b ,~0T , p−b ) = (

m2
b

2ξbP
−
B

,~0T , ξbP
−
B ) for the colliding a and b partons.

• We adapted the method into a Monte-Carlo algorithm for the proton-proton collisions.
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Massive Partons in the Initial states cont’d

• Very recently we now added massive corrections to the splitting kernel Pg→H:

P massive
g→H = P massless

g→H + P correction
g→H = TR (1 − 2z(1 − z)) + TR

(

2z(1 − z)m2
H

p2
T + m2

H

)

,

which further improves our method in the very collinear region (µ → mH).

• We are the first ones to do it by adapting the calculations from Catani et al paper [hep-ph/0201036] and the results

go in the right direction.
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Implementation: AcerMC 3.x Monte-Carlo generator

• A Monte-Carlo generator of select Standard Model processes for searches at ATLAS/LHC.

• Matrix element coded by MADGRAPH/HELAS

➔T. Stelzer and W. F. Long, Comput.Phys.Commun. 81 (1994) 357.

• Phase space sampling done by native AcerMC routines:

➔Eur. Phys. J. C 439-450 (2005)

⊕ Each channel topology constructed from generic t-type and s-type modules and massive sampling functions.

The event topologies auto-generated from modified MADGRAPH/HELAS code.

⊕ multi-channel approach

➔J.Hilgart, R. Kleiss, F. Le Dibider, Comp. Phys. Comm. 75 (1993) 191.

➔F. A. Berends, C. G. Papadopoulos and R. Pittau, hep-ph/0011031.

⊕ additional ac-VEGAS smoothing

➔G.P. Lepage, J. Comput. Phys. 27 (1978) 192.

• ac-VEGAS Cell splitting in view of maximal weight reduction based on function:

< F >cell =
(

∆cell · wtmax
cell

)

·
{

1 − <wtcell>
wtmax

cell

}

• ac-VEGAS logic in this respect analogous to FOAM:

➔S. Jadach, Comput. Phys. Commun. 130 (2000) 244.
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Currently implemented processes:

Process Description

1 gg → tt̄bb̄
2 qq̄ → tt̄bb̄
3 qq̄ → W (→ ff̄ )bb̄
4 qq̄ → W (→ ff̄ )tt̄
5 gg → Z/γ∗(→ ff̄ )bb̄
6 qq̄ → Z/γ∗(→ ff̄ )bb̄
7 gg → Z/γ∗(→ ff̄ , νν)tt̄
8 qq̄ → Z/γ∗(→ ff̄ , νν)tt̄
9 gg → (Z/W/γ∗ →)tt̄bb̄
10 qq̄ → (Z/W/γ∗ →)tt̄bb̄
11 gg → (tt̄ →)ff̄ bf f̄b
12 qq̄ → (tt̄ →)ff̄ bf f̄b
13 gg → (WWbb̄ →)ff̄f f̄bb̄
14 qq̄ → (WWbb̄ →)ff̄f f̄bb̄
15 gg → tt̄tt̄
16 qq̄ → tt̄tt̄
17 qb ⊕ qg → qt ⊕ b → qbff̄ ⊕ b (100+101)
18 bb ⊕ bg → Z0 ⊕ b → ff̄ ⊕ b (96+97)
19 qq → tb → bff̄b
20 gb ⊕ gg → (WWb ⊕ b̄ →)ff̄f f̄b ⊕ b̄ (13+105)
21 gb → tW → bff̄f f̄
22 qq → Z0′ → tt̄ → bb̄f f̄f f̄

Various types:

• Processes involving top pair production

• The single top processes

• The Z-prime decay to tops

• The (A + B) denote PS+ME matched processes.

• All processes with decayed tops include

full spin information.
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Example of 2 → 4 processes: ud̄ → W+g∗ → l+νlbb̄, pp @ 14 TeV

• Examples of invariant mass distributions obtained with AcerMC

W+

g

q1

q̄2

e+

νe

b

b̄

Sampling
dσ/dmbb

mbb [ GeV/ c2 ]

(1
/N

) 
dN

/d
m

bb

10
-3

10
-2

0 10 20 30 40 50 60 70 80 90 100

Sampling
dσ/dmWbb

mWbb [ GeV/ c2 ]

(1
/N

) 
dN

/d
m

w
bb

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

0 20 40 60 80 100 120 140 160 180 200

• Some variances and unweighing efficiencies obtained using standard AcerMC 1.4 and new AcerMC 2.0

(and later) phase space sampling.

Process AcerMC 2.0 Vσ [pb2] AcerMC 1.4 Vσ [pb2] AcerMC 2.0 ǫ AcerMC 1.4 ǫ

gg → Z/(→ ℓℓ)bb̄ 0.129 · 10−2 ± 0.52 · 10−5 0.159 · 10−2 ± 0.61 · 10−5 37% 33%

qq̄ → W (→ ℓν)bb̄ 0.390 · 10−2 ± 0.15 · 10−4 0.533 · 10−2 ± 0.18 · 10−4 35% 33%

gg → tt̄bb̄ 0.522 · 10−4 ± 0.19 · 10−6 0.972 · 10−4 ± 0.44 · 10−6 36% 20%
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Example of 2 → 6 processes: gg → bb̄W +W− → bb̄ℓν̄ℓℓ̄νℓ

• The process cross-sections and variances with their uncertainties and unweighing efficiencies as obtained for

two sample 2 → 6 processes implemented in AcerMC 2.0 Monte–Carlo generator.

AcerMC 2.0 Process σ [pb] Vσ [pb2] ǫ

gg → tt̄ → bb̄W +W− → bb̄ℓν̄ℓℓ̄νℓ (3 Feyn./2 sampl. chan.) 4.49 0.80 · 10−4 ± 0.39 · 10−6 14%

gg → bb̄W +W− → bb̄ℓν̄ℓℓ̄νℓ (31 Feyn./13 sampl. chan.) 4.77 0.77 · 10−4 ± 0.29 · 10−5 17%

• Example of the weight distributions obtained with the two processes.

Wt × 2 •  106 [ pb]

(1
/N

) 
dN

/d
(W

t)

gg → tt
_
 → W+W-bb

_
 → 4f bb

_

gg → W+W-bb
_
 → 4f bb

_

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

• Bottom line is: It Works!
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Massive Parton Shower + pQCD Implementation:

• The AcerMC MC generator now incorporates the described procedure of Parton Shower (ISR) and ME

matching for g → bb̄ splitting for a small set of processes

Details:

• The ISR ’showering’ involving g → bb̄ has been implemented inside AcerMC.

• This algorithm is used to evolve a process from bX → Y to gX → Y ⊕ b.

• This process is combined with the corresponding ’NLO’ process gX → Y + b and the double counting terms are

calculated and subtracted on event-by-event basis.

• As the result a fraction of events has negative (=-1) weights!

• This procedure has been implemented for the:

– t-channel single top production.

– bb̄WW production which involves the (’evolved’) tWb single top production.

– Associated Z0 b production.
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t-channel single top production:

• The t-channel process is the combined production of the qb → qt and qg → qtb W-exchange processes.

• One needs to remove the double counting between the ISR g → bb̄ splitting and the next-order αS process

qg → qtb.

• In fact the t-channel single top production involves the full matrix element including top decays.

W

b

q

t

q′

⊕ W

g

q

b̄

t

q′

⊖ W

g

q

b̄

t

q′

b

tW-channel single top production: Similar case, it double counts the tWb diagrams.

b

g

W

t

⊕

g

g

b̄

W

t

⊖

g

g

b̄

W

t

b
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Kinematic distributions for t-channel single top :

• Note that a smooth continuation in the b-quark virtuality is achieved.

• The pT distribution is again a result of non-trivial contributions.
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Kinematic distributions for tW-channel single top:

• Note that a smooth continuation in the b-quark virtuality is again achieved.

• The pT distribution again a result of non-trivial contributions.

• The plots serve as a cross-check; in AcerMC process 20 the procedure is applied to the WWbb̄ (2 → 6) process

13 which includes the tWb intermediate states among its 31 diagrams.
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Drell-Yan Z + b production:

• The double counting is in this case two-fold: either b or b̄ can originate in gluon splitting.

• In fact the Drell-Yan case has been implemented with the full matrix element including photon interference.

Z0/γ

b

g

l

l̄

b

b̄
⊕

Z0/γ

b

g

l

l̄

b

⊖

Z0/γ

b

g

l

l̄

b

b̄

LO + Parton shower NLO Double counting

Process σCTEQ5L,µ0=mZ
[pb] σJCC,µ0=mZ

[pb]
bb̄ → Z → µ+µ− 57.9 39.9
gb → Zb → µ+µ−b 72.1 60.0
(g → bb̄)b → Zb → µ+µ−b 73.3 60.9
Σ 56.7 39.0
gg → Zbb̄ → µ+µ−bb̄ 22.8 22.8
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Drell-Yan Z + b production cont’d:

• Note that a smooth continuation in the b-quark virtuality is achieved regardless of the matching point/factorization

scale.

• The pT distribution is a result of non-trivial contributions in this case.
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Drell-Yan Z + b production cont’d: massive evolution kernels (new)

• In the new (upcoming) AcerMC version the new massive evolution kernel is introduced.

• Note that the kink at low µ scale now disappears, the continuation really smooth. . .
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Even Newer Drell-Yan gg → Zbb̄

• In the new (upcoming) AcerMC version the a new α2
s process of associated gg → Zbb̄ production with overlap

removal.

• A proof-of-concept that the method is indeed iterative in nature

PA PB

g g
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dσ(0)

PA PB

g g

H

H̄
Z0/γ∗

H

fg/A fg/B

dSH/g

dσ(1)

PA PB

g g

H̄
Z0/γ∗

H

fg/A fg/B

dσ(2)

Process σCTEQ6L1,µF=mZ
[pb] σJCC,µF=mZ

[pb]
σ0 64.4 44.8
σ1 -10.7 -8.9
σ2 2.0 2.0
Σiσ

i 51.7 33.9
gg → Zbb̄ → µ+µ−bb̄ 22.9 22.9
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Even Newer Drell-Yan gg → Zbb̄ cont’d

• The distributions again smooth in one dimension. . .
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Even Newer Drell-Yan gg → Zbb̄ cont’d

• . . . and in two dimensions!

• Plots show separate pQCD order contributions with counter-terms.
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Even Newer Drell-Yan gg → Zbb̄ cont’d

• Plots show incremental sums of pQCD order contributions with counter-terms.
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Conclusions:

• The described procedure has been shown to work. . .

• For details please consult [hep-ph/0603068] or JHEP 0609:033,2006.

• In case one wants to check this in practice: The complete AcerMC manual available from:

http://cern.ch/Borut.Kersevan/AcerMC.Welcome.html

• AcerMC code is available from the same URL.

• This procedure is recursive, so it could be implemented for arbitrary number of splits (ISR/FSR) and possibly a

CKKW-like procedure [hep-ph/0109231] could be achieved.

• the Z0bb̄ paper in preparation.

• Needs work and time..


