New results for VHEeP

Max-Planck-Institut für Physik, 2 June 2017

Fearghus Keeble, UCL

Massive increase in the understanding of QCD

- 2007

Massive increase in the understanding of QCD

- 1992
- 2007

Massive increase in hair

$$
\begin{aligned}
& E_{p}=7 \mathrm{TeV} \\
& E_{e}=3 \mathrm{TeV} \\
& \sqrt{s} \simeq 9 \mathrm{TeV}
\end{aligned}
$$

I will give an overview of the VHEeP kinematics as well as an update on some of the plots from Allen and Matthew's paper

$$
Q^{2}\left(x, E^{\prime}\right)=s x \cdot \frac{E_{e}-E^{\prime}}{E_{e}-x E_{p}}
$$

- Post-collision electrons in the region of interest can have very different energies to the beam.

$\pm \mathrm{OCl}_{1}$

Large ΔE_{e} allows separation of scattered electrons.

Large ΔE_{e} allows separation of scattered electrons.

High Q^{2} events
What about the hadronic final state?

$$
Q^{2}\left(x, \gamma_{\mathrm{had}}\right)=s x \cdot \frac{x E_{p}}{x E_{p}+E_{e} \cot ^{2}\left(\gamma_{\mathrm{had}} / 2\right)}
$$

- Post-collision hadrons in the region of interest will be collinear or near-collinear with the electron beam.

$$
Q^{2}\left(x, \gamma_{\mathrm{had}}\right)=s x \cdot \frac{x E_{p}}{x E_{p}+E_{e} \cot ^{2}\left(\gamma_{\mathrm{had}} / 2\right)}
$$

- Post-collision hadrons in the region of interest will be collinear or near-collinear with the electron beam.

$$
Q^{2}\left(x, \gamma_{\mathrm{had}}\right)=s x \cdot \frac{x E_{p}}{x E_{p}+E_{e} \cot ^{2}\left(\gamma_{\mathrm{had}} / 2\right)}
$$

- Post-collision hadrons in the region of interest will be collinear or near-collinear with the electron beam.

$$
y=1.00
$$

$$
Q^{2}\left(x, \gamma_{\mathrm{had}}\right)=s x \cdot \frac{x E_{p}}{x E_{p}+E_{e} \cot ^{2}\left(\gamma_{\mathrm{had}} / 2\right)}
$$

- Post-collision hadrons in the region of interest will be collinear or near-collinear with the electron beam.

$$
Q^{2}\left(x, E_{\mathrm{had}}\right)=s x \cdot \frac{x E_{p}-E_{\mathrm{had}}}{x E_{p}-E_{e}}
$$

- Post-collision, the struck parton can be very energetic in the region of interest.
$1 \mathrm{I}_{1}$

$51 C_{1}$

Straw man jet

High Q^{2} events

CTEQ4l PDFs

■ CTEQ2I was not available as an LHAPDF file but we can look at CTEQ4I and hope they are similar.

- Suggests that the low x weighting of Matthew and Allen's results was not high enough.
- Can we do better with more modern PDFs and more modern generators?

- As a UCL student, my first instinct is to look at MMHT2014.
- The bands correspond to Hessian 68% CLs.
- Below the data the line is extrapolated linearly in $\ln (x f(x, Q))$ so ends up looking like a power law on this log-linear plot (CTEQ do the same now).
- The uncertainty is very large in the region of interest.

MMHT2014lo68cl PDFs

- As a UCL student, my first instinct is to look at MMHT2014.
- The bands correspond to Hessian 68\% CLs.
- Below the data the line is extrapolated linearly in $\ln (x f(x, Q))$ so ends up looking like a power law on this log-linear plot (CTEQ do the same now).
- The uncertainty is very large in the region of interest.

MMHT2014lo68cl PDFs

- As a UCL student, my first instinct is to look at MMHT2014.
- The bands correspond to Hessian 68\% CLs.
- Below the data the line is extrapolated linearly in $\ln (x f(x, Q))$ so ends up looking like a power law on this log-linear plot (CTEQ do the same now).
- The uncertainty is very large in the region of interest.

MMHT2014nlo68cl PDFs

- As a UCL student, my first instinct is to look at MMHT2014.
- The bands correspond to Hessian 68\% CLs.
- Below the data the line is extrapolated linearly in $\ln (x f(x, Q))$ so ends up looking like a power law on this log-linear plot (CTEQ do the same now).
- The uncertainty is very large in the region of interest.

MMHT2014lo68cl PDFs

NNPDF30_lo_as_0118 PDFs

- NNPDF 3.0 uses a different error calculation (MC sampling of the neural nets) which gives a much wider band.
- Particularly high probability of negatively weighted events using this PDF, even at LO.
- I will come back to this very shortly.

- NNPDF 3.0 uses a different error calculation (MC sampling of the neural nets) which gives a much wider band.
- Particularly high probability of negatively weighted events using this PDF, even at LO.
- I will come back to this very shortly.

NNPDF30_lo_as_0118 PDFs

- NNPDF 3.0 uses a different error calculation (MC sampling of the neural nets) which gives a much wider band.
- Particularly high probability of negatively weighted events using this PDF, even at LO.
- I will come back to this very shortly.

- NNPDF 3.0 uses a different error calculation (MC sampling of the neural nets) which gives a much wider band.
- Particularly high probability of negatively weighted events using this PDF, even at LO.
- I will come back to this very shortly.

- With the help of a masters student (Emma Simpson Dore, now bound for KIT) we've entered the 21st century.
- We have the Rapgap 3.3 running with the Rivet toolkit.
- We've benchmarked our version of this against a H1 analysis.
- We've managed to get it working with some of the modern PDFs (NNPDF3.0 and CT14 work, MMHT2014 doesn't yet).
■ We've made a Rivet routine to assess the final state for the VHEeP kinematics.
- This is a very general routine looking at $x, Q^{2}, y, \theta_{e}, \gamma_{\text {had }}$, etc.

■ We've also got Herwig 7.0 working for DIS with the VHEeP rivet routine.

- This is particularly good as it is truly a modern event generator.
- Some mysteries about low x PDF treatment, however.
- We've also being working on running Rapgap in diffractive mode to simulate exclusive photoproduction of J / ψ mesons.
- We're trying to replicate another H1 analysis.
- With help from Hannes, this is moving forward - slowly.

Using NNPDF 3.0 LO $\alpha_{s}\left(M_{z}\right)=0.118$

Using NNPDF 3.0 LO $\alpha_{s}\left(M_{z}\right)=0.118$

- To make this more concrete, consider $d \sigma / d x$ rather than the number of events.
- We can apply a post hoc reweighting of these events using LHAPDF to take the PDF uncertainty into account*.

RAPGAP

Herwig

As we have heard throughout this workshop, very high energy $e P$ and $e A$ physics is a much richer field than the LO pQCD eP DIS I have just discussed. Nevertheless, we can draw conclusions from this case.

■ The final state will be very challenging to measure but not impossible.

- A very flexible system is required to deal well with the electron and jet final state.
- This is particularly true if either of the beam energies will be varied.
- PDFs in the VHEeP region are unconstrained by data and follow questionably motivated extrapolations with equally questionable uncertainties.
- This collider could change that - with potentially widespread benefit.
- Modern event generators are available for $e P$ physics.
- Due to the large PDF uncertainties I cannot recommend using inclusive $e P$ predictions as support for the collider.
- Hopefully, I have shown that you can go a long way to understanding the technical challenge without using MC.

