

Plasma wakefield acceleration and high energy physics

Matthew Wing (UCL/DESY)

- Introduction and motivation
- Plasma wakefield acceleration
- Laser-driven plasma wakefield acceleration
- Electron-driven plasma wakefield acceleration
- Proton-driven plasma wakefield experiment at CERN
- Summary and outlook

Introduction and motivation

Motivation: big questions in particle physics

- The Standard Model is amazingly successful, but some things remain unexplained :
- a detailed understanding of the Higgs Boson/mechanism
- neutrinos and their masses
- why is there so much matter (vs antimatter) ?
- why is there so little matter (5% of Universe) ?
- what is dark matter and dark energy ?
 Does supersymmetry occur at the *TeV* scale
- why are there three families ?
- hierarchy problem; can we unify the forces ?

• ...

Colliders at the high energy frontier will be key to solving some of these questions

Motivation: colliders

- The use of (large) accelerators has been central to advances in particle physics.
- Culmination in 27-km long LHC (pp); e.g. a future $e^+e^$ collider planned to be 30–50km long.
- The high energy frontier is (very) expensive; can we reduce costs ? Can we develop and use new technologies ?
- The Livingston plot shows a saturation ...

Motivation: plasma wakefield acceleration as a solution

• Accelerating gradients achieved in the wakefield of a plasma are very high (3 orders of magnitude more than RF acceleration and up to **100 GV/m**), but :

- we need high-energy beams (~ TeV);
- high repetition rate and high number of particles per bunch;
- efficient and highly reproducible beam production;
- small beams sizes (down to nm scale);
- large-scale accelerator complex.
- Ultimate goal : can we have *TeV* beams produced in a accelerator structure of a few *km* in length ?
- A challenge for accelerator, plasma and particle physics.

Plasma wakefield acceleration

Plasma wakefield acceleration

- Electrons 'sucked in' by proton bunch
- Continue across axis creating depletion region
- Oscillation of plasma electrons creates strong electric fields
- Longitudinal electric fields can accelerate particles in direction of proton bunch
- Transverse electric fields can focus particles

• A 'witness' bunch of e.g. electrons placed at the appropriate place can be accelerated by these strong fields

Plasma considerations

Based on linear fluid dynamics :

$$\omega_p = \sqrt{\frac{n_p e^2}{\epsilon_0 m_e}}$$

$$\lambda_p \approx 1 \,[\text{mm}] \sqrt{\frac{10^{15} \,[\text{cm}^{-3}]}{n_p}} \quad \text{or} \approx \sqrt{2} \pi \,\sigma_z$$

$$E \approx 2 \,[\text{GV}\,\text{m}^{-1}] \left(\frac{N}{10^{10}}\right) \left(\frac{100 \,[\mu\text{m}]}{\sigma_z}\right)^2$$

Relevant physical quantities :

- Oscillation frequency, ω_{P}
- Plasma wavelength, λ_{p}
- Accelerating gradient, *E* where :
- n_p is the plasma density
- e is the electron charge
- ε_0 is the permittivity of free space
- *m*_e is the mass of electron
- N is the number of drive-beam particles
- σ_z is the drive-beam length

High gradients with :

- Short drive beams (and short plasma wavelength)
- Pulses with large number of particles (and high plasma density)

Plasma wakefield acceleration applications

Plasma wakefield acceleration could have applications in many areas of science and industry where accelerators are needed.

- Miniaturisation and 'table-top' accelerators
- E.g. medical applications, XFELs, etc.

Will here focus on general principles and successes of plasma wakefield acceleration but with definite focus on its application to high energy physics.

See talks at 2nd European Advanced Accelerator Concepts "EAAC 2015" workshop, September 2015, Elba <u>https://agenda.infn.it/conferenceTimeTable.py?confld=8146#20150913</u>

And talks at LCWS 2015, November 2015 Whistler, from E. Esarey (Laser wakefield acceleration), E. Adli (Beamdriven wakefield acceleration) and D. Schulte (Future LC requirements). <u>http://agenda.linearcollider.org/event/6662/other-view?view=standard</u>

Laser-driven plasma wakefield acceleration

First laser-driven plasma wakefield experiments

2004 result: 10 TW laser, mm scale plasma

J. Faure et al., Nature 431 (2004) 541

2006 result: 40 TW laser, cm scale plasma

First GeV beams.

W.P. Leemans et al., Nature Phys. **2** (2006) 696 K. Nakamura et al., Phys. Plasmas **14** (2007) 056708

Accelerator based on laser plasma wakefield acceleration

Figure 6. A 2-TeV electron–positron collider based on laserdriven plasma acceleration might be less than 1 km long. Its electron arm could be a string of 100 acceleration modules, each with its own laser. A 30-J laser pulse drives a plasma wave in each module's 1-m-long capillary channel of preformed plasma. Bunched electrons from the previous module gain 10 GeV by riding the wave through the channel. The chain begins with a bunch of electrons trapped from a gas jet just inside the first module's plasma channel. The collider's

> positron arm begins the same way, but the 10-GeV electrons emerging from its first module bombard a metal target to create positrons, which are then focused and injected into the arm's string of modules and accelerated just like the electrons.

W. Leemans, E. Esarey, Physics Today, March 2009

- Acceleration using 100 stages of 10 GeV each.
- Assume laser with high repetition rate, O(10) kHz.

Scaling in laser-driven plasma experiments

Energy gain limited by laser energy depletion

- Depletion length: $L_D \propto n^{-3/2}$
- Accelerating gradient: $E \propto n^{1/2}$
- Energy gain: $W \propto n^{-1}$

Staging is necessary to reach high energies

Example for a single stage

W ~ 1 GeV		W ~ 10 GeV
n ~ 10 ¹⁸ cm ⁻³		n ~ 10 ¹⁷ cm ⁻³
L _D ~ 3 cm	\longrightarrow	L _D ~ 1 m
U _{laser} ~ 1 J		U _{laser} ~ 40 J
P _{laser} ~ 100 TW		P _{laser} ~ 1 PW

LPA Experiments (single stage)

Latest results from BELLA laser, LBNL

Using a *310 TW* laser pulse (*15 J*) and *9 cm* plasma:

- *E* = 4.2 GeV
- 6% rms energy spread
- Q = 6 pC
- Reasonable agreement with simulation.

Simulations indicate 10 GeV bunches can be achieved and that is the BELLA goal.

Measurements made using two stages (publications expected soon).

Combining laser fibres

Coherent combination of diode-pumped fibre lasers could lead to high-power, highefficiency lasers.

Repetition rates of O(10) kHz

Challenge: need to combine ~ 10^4 fibre lasers

Figure 1 | Principle of a coherent amplifier network. An initial pulse from a seed laser (1) is stretched (2), and split into many fibre channels (3). Each channel is amplified in several stages, with the final stages producing pulses of ~1 mJ at a high repetition rate (4). All the channels are combined coherently, compressed (5) and focused (6) to produce a pulse with an energy of >10 J at a repetition rate of ~10 kHz (7).

G. Mourou et al., Nature Photonics **7** (2013) 258

Electron-driven plasma wakefield acceleration

First beam-driven plasma wakefield experiments

- Experiments at SLAC[§] used a particle (electron) beam :
 - Initial energy $E_e = 42 \text{ GeV}$
 - Gradients up to ~ 52 GV/m
 - Energy doubled over $\sim 1 m$
 - Particles in head of beam 'transferred' energy to particles in tail
- Next stage, FACET project (http://facet.slac.stanford.edu)
- But also have proton beams of much higher energy.

§ I. Blumenfeld et al., Nature **445** (2007) 741.

FACET project at SLAC

Facility for Advanced Accelerator Experimental Tests at SLAC is five-year programme by SLAC, UCLA, University of Oslo and Ecole Polytechnique to investigate:

- Two-bunch experiments: acceleration of a witness bunch.
- Metre-scale plasmas
- High gradients
- Low energy spread
- High efficiency
- Acceleration with e⁺
- Emittance preservation
- Electron or positron bunch:
- *E* = 20 GeV
- Q = 3 nC
- $\sigma_{z,r} = 20 \ \mu m$
- ε ~ 100 μm

FACET two-bunch generation

Single bunches generated so need to chop bunch in two.

3. Compress

4. Accelerate

5. Diagnose

FACET two-bunch results

- *1.7 GeV* energy gain in *30 cm* of Li vapour plasma.
- 2% energy spread.
- Accelerated bunch has charge ~ 70 pC
- Up to 30% wake-to-bunch energy transfer efficiency (mean 18%).
- 6 GeV energy gain in 1.3 m of plasma.

FACET positron acceleration

- Energy gains of about 5 GeV over 1.3 m of plasma.
- Energy spread about 2%.
- *30%* energy efficiency from wake.
- Charge of up to 200 pC.
- Note this is single-bunch running.
- Application to 'afterburner' for high energy positrons.

FACET programme to continue even with LCLS II

S. Corde et al., Nature 524 (2015) 442

FLASHForward Future-oriented wakefield-accelerator research and development at FLASH

for more details

Conceptual design concluded, technical design in progress, experiments to start in 2016, run for 4 years+

- the application of these beams in undulators to test feasibility of FEL gain
- > investigation of stability of and control over plasma-accelerated beams

In-plasma beam-generation techniques require current control, allow for sub-fs, sub-µm emittance electron bunches

e⁺e⁻ collider based on beam-driven plasma wakefield acceleration

- Straw-man design of such a scheme for a linear collider.
- Need multiple acceleration stages.
- Acceleration to 500 GeV over 0.5 km.

Proton-driven plasma wakefield acceleration

≜UCL

Proton-driven plasma wakefield acceleration concept*

Table 1 | Table of parameters for the simulation.

Parameter	Symbol	Value	Units
Protons in drive bunch	N _P	10 ¹¹	
Proton energy	E _P	1	TeV
Initial proton momentum spread	$\sigma_{\rm p}/p$	0.1	
Initial proton bunch longitudinal size	σ_z	100	μm
Initial proton bunch angular spread	$\sigma_{ heta}$	0.03	mrad
Initial proton bunch transverse size	$\sigma_{x,y}$	0.43	mm
Electrons injected in witness bunch	N _e	1.5 × 10 ¹⁰	
Energy of electrons in witness bunch	Ee	10	GeV
Free electron density	np	6 × 10 ¹⁴	cm ⁻³
Plasma wavelength	λ_{p}	1.35	mm
Magnetic field gradient		1,000	$T m^{-1}$
Magnet length		0.7	m

Note proton bunch length, 100 μ m; cf LHC, bunch length, ~10 cm

* A. Caldwell et al., Nature Physics 5 (2009) 363.

Possibilities with proton drivers

From original paper: proton beam impacting on a plasma to accelerate and electron witness beam.

Can be tuned, but already shows spectacular acceleration.

Long proton bunches ?

Use self-modulation instability where micro-bunches are generated by a transverse modulation of the bunch density.

N. Kumar, A. Pukhov, K.V. Lotov, Phys. Rev. Lett. 104 (2010) 255003

- Micro-bunches are spaced λ_{ρ} apart and have an increased charge density.
- Micro-bunches constructively reinforce to give large wakefields, GV/m.
- Self-modulation instability allows current beams to be used.

AWAKE experiment at CERN

Advanced proton-driven plasma wakefield experiment.

To use 400 GeV SPS beam in CNGS target area.

AWAKE Coll., R. Assmann et al., Plasma Phys. Control. Fusion **56** (2014) 084013

AWAKE is a collaboration of

16 institutes world-wide

AIVAKE

AWAKE experimental programme

Phase 1: understand the physics of self-modulation instability process in plasma

AWAKE experimental programme

Phase 2: probe the accelerating wakefields with externally injected electrons.

Demonstrate GeV acceleration of electrons with proton-driven wakefields

AWAKE physics and timeline

	2013	2014	2015	2016	2017	2018	2019	2020
Proton and laser beam- line		Study, Design, Procurement, C	Insta Component prep	llation	Data taki	ng	Long Shute 24 mor	down 2
Experimental area		Modification, Civil Engineering and installation Study, Design, Procurement, Component preparation			Phase 1			
Electron source and beam-line		Studies, design	Fab	rication	Installation	Commissio ning	2	

After initial running, developing a programme for after LS2:

- Demonstrate that gradients can be maintained over long distances
- Demonstrate a scalable plasma technology
- Inject short electron and proton bunches
- Develop design for a plasma based collider

[≜]UCL

Proton-driven plasma wakefield accelerator

Figure 1: Concept for a multi-TeV upgrade of the International Linear Collider based on proton-driven plasma acceleration. The phase slippage controlling chicanes within the linacs are not shown. Not to scale.

Initial designs:

- Use as an afterburner.
- Or as a new facility to achieve a linear collider.

V. Yakimenko and T. Katsouleas, Plasma Phys. Control. Fusion **53** (2011) 085010

UCL

Particle physics application

- Application based on existing infrastructure.
- Very high energy, but more modest luminosities.
- Consider e(3 TeV)—P(7 TeV) collisions, √s ~ 9 TeV.

VHEeP: A very high energy electronproton collider based on protondriven plasma wakefield acceleration

Allen Caldwell (MPI) Matthew Wing (UCL/DESY/Univ. Hamburg)

- Introduction
- Accelerator based on plasma wakefield acceleration
- Physics in very high energy eP collisions
- Summary and outlook

DIS 2015 Workshop — 28 April 2015

As well as considering designs for a linear collider

A. Caldwell & K. Lotov, Phys. Plasmas **18** (2011) 103101

Plasma wakefield accelerator

• Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.

• Need high gradient magnets to bend protons into the LHC ring.

• One proton beam used for electron acceleration to then collider with other proton beam.

• High energies achievable and can vary electron beam energy.

• Luminosity ~ $5 \times 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$, but looking to increase.

- Physics at very low parton momentum fraction, *x*, does not need high luminosities.
- Variation of beam energy: γP total cross section, F_L , etc.
- Leptoquarks beyond the reach of LHC given the high \sqrt{s} and other contact interactions.

Search for proton saturation at plasma accelerator

Onset of saturation—completely different proton structure at low *x*.

36

Summary and outlook

Summary

- Plasma wakefield acceleration could be the technology to reach the high energy frontier with more compact facilities.
- Energy gains of ~ 5 GeV have been measured in laser- and electron-driven plasma wakefield acceleration.
- Accelerating gradients up to ~ 100 GeV/m have been observed.
- Bunches with reasonable properties are produced: %-level energy spread, O(100) pC of charge.
- Positrons and electrons have both undergone significant acceleration.
- Several new experiments will be happening over the coming years investigating:
 - Staging and maximum energy through laser-driven acceleration
 - Two bunch running for electron beams and high-quality production
 - Use of protons as a driver of plasma wakefield acceleration.

European demonstration plasma wakefield accelerator

R. Assmann, EuroNNAc2 @ EuCARD2, 4/2015

EuPRAXIA: European design study for an "European Plasma Research Accelerator with eXcellence In Applications". Funded as 3 MEUR "Design Study" 39

Outlook

- Plasma wakefield acceleration is very promising but has a number of issues to be addressed in order to come up with a realistic collider design.
- Plasma and accelerator physicists need to work together to develop a sound design and high energy physicists need to consider the possible physics cases.
- The involvement of large labs, SLAC, DESY and CERN, is significant and should enable many questions to be answered.
- The coming experiments, AWAKE, BELLA, FACET, FLASHForward, etc., will tell us a lot about beam quality, ultimate plasma stage lengths, reproducibility, and hence energy and luminosity of a possible collider.

Extras

FACET efficiency

Efficiency: energy gain by trailing bunch / energy loss by drive bunch

42

σ_{YP} at large coherence lengths

Look at behaviour of $\sigma_{\gamma P}$ in the proton rest frame in terms of Q² and coherence length, *I*.

Electron is a source of photons which is a source of partons.

Coherence length is distance over which quark-antiquark pair can survive.

If cross sections become same as a function of Q2, the photon states have had enough time to evolve into a universal size.

Look at what HERA data has shown and what the potential of VHEeP is.