An electron beam for physics experiments based on an AWAKE scheme

Matthew Wing (UCL)

- Introduction and motivation
- Plasma wakefield acceleration
- The AWAKE Experiment at CERN
- Future electron beam based on AWAKE scheme
- Possible physics experiments
 - Search for dark photons, NA64-like
 - High energy electron-proton collisions, LHeC-like and VHEeP
- Summary

Motivation: big questions in particle physics

The Standard Model is amazingly successful, but some things remain unexplained :

- a detailed understanding of the Higgs Boson/mechanism
- neutrinos and their masses
- why is there so much matter (vs antimatter) ?
- why is there so little matter (5% of Universe) ?
- what is dark matter and dark energy ?
 Does supersymmetry occur at the TeV scale
- why are there three families ?
- hierarchy problem; can we unify the forces ?
- what is the fundamental structure of matter ?

Colliders and use of high energy particle beams will be key to solving some of these questions

2

Motivation: colliders

• The use of (large) accelerators has been central to advances in particle physics.

- Culmination in 27-km long LHC (pp); e.g. a future $e^+e^$ collider planned to be 30–50km long.
- The high energy frontier is (very) expensive; can we reduce costs ? Can we develop and use new technologies ?
- Accelerators using RF cavities limited to ~100 MV/m; high energies \rightarrow long accelerators.
- The Livingston plot shows a saturation ...

Motivation: plasma wakefield acceleration as a solution

- Plasma wakefield acceleration is a promising scheme as a technique to realise shorter or higher energy accelerators in particle physics.
- Accelerating gradients achieved in the wakefield of a plasma are very high (3 orders of magnitude more than RF acceleration and up to **100 GV/m**), but :
 - we need high-energy beams (~ TeV);
 - high repetition rate and high number of particles per bunch;
 - efficient and highly reproducible beam production;
 - small beams sizes (potentially down to nm scale);
 - large-scale accelerator complex.
- Ultimate goal : can we have *TeV* beams produced in a accelerator structure of a few *km* in length ?
- Here consider realistic applications:
 - Based on AWAKE scheme of proton-driven plasma wakefield acceleration;
 - Strong use of CERN infrastructure;
 - Need to have novel and exciting physics programme.
- A challenge for accelerator, plasma and particle physics.

Plasma wakefield acceleration and AWAKE

Plasma wakefield acceleration

- Electrons 'sucked in' by proton bunch
- Continue across axis creating depletion region
- Oscillation of plasma electrons creates strong electric fields
- Longitudinal electric fields can accelerate particles in direction of proton bunch
- Transverse electric fields can focus particles

• A 'witness' bunch of e.g. electrons placed at the appropriate place can be accelerated by these strong fields

Plasma considerations

Based on linear fluid dynamics :

$$\omega_p = \sqrt{\frac{n_p e^2}{\epsilon_0 m_e}}$$

$$\lambda_p \approx 1 \,[\text{mm}] \sqrt{\frac{10^{15} \,[\text{cm}^{-3}]}{n_p}} \text{ or } \approx \sqrt{2} \pi \sigma_z$$

$$E \approx 2 \,[\text{GV}\,\text{m}^{-1}] \left(\frac{N}{10^{10}}\right) \left(\frac{100 \,[\mu\text{m}]}{\sigma_z}\right)^2$$

Relevant physical quantities :

- Oscillation frequency, ω_p
- Plasma wavelength, λ_{p}
- Accelerating gradient, *E* where :
- *n_p* is the plasma density
- e is the electron charge
- ε_0 is the permittivity of free space
- *m*_e is the mass of electron
- *N* is the number of drive-beam particles
- σ_z is the drive-beam length

High gradients with :

- Short drive beams (and short plasma wavelength)
- Pulses with large number of particles (and high plasma density)

Plasma wakefield experiments

- Pioneering work using a LASER to induce wakefields up to *100 GV/m*.
- Experiments at SLAC[§] have used a particle (electron) beam :
 - Initial energy E_e = 42 GeV
 - Gradients up to ~ 52 GV/m
 - Energy doubled over $\sim 1 m$
 - Next stage, FACET project (http://facet.slac.stanford.edu)
- Have proton beams of much higher energy :
 - CERN : 450 GeV and 6.5 (7) TeV
 - Can accelerate trailing electron bunch to high energy in one stage

Proton-driven plasma wakefield acceleration concept*

 E_{z} (GeV m⁻¹)

* A. Caldwell et al., Nature Physics 5 (2009) 363.

AWAKE experiment at CERN

Second muon d

∕06 / 2003 ∖

AWAKE Coll., R. Assmann et al., Plasma Phys. Control. Fusion **56** (2014) 084013

Long proton bunches ?

Use self-modulation instability where micro-bunches are generated by a transverse modulation of the bunch density.

N. Kumar, A. Pukhov, K.V. Lotov, Phys. Rev. Lett. 104 (2010) 255003

- Micro-bunches are spaced λ_p apart and have an increased charge density.
- Micro-bunches constructively reinforce to give large wakefields, *GV/m*.
- Self-modulation instability allows current beams to be used.

AWAKE experimental programme (Run I)

Phase 1: understand the physics of self-modulation instability process in plasma

AWAKE experimental programme (Run I)

Phase 2: probe the accelerating wakefields with externally injected electrons.

Demonstrate *GeV* acceleration of electrons with proton-driven wakefields of *GV/m*

An AWAKE-like beam for particle physics

AWAKE Run II

- Preparing AWAKE Run 2, after LS2 and before LS3.
 - Accelerate electron bunch to higher energies.
 - Demonstrate beam quality preservation.
 - Demonstrate scalability of plasma sources.

Preliminary Run 2 electron beam parameters

Parameter	Value				
Acc. gradient	>0.5 GV/m				
Energy gain	10 GeV				
Injection energy	$\gtrsim 50 \text{ MeV}$				
Bunch length, rms	40–60 µm (120–180 fs)				
Peak current	200–400 A				
Bunch charge	67–200 pC				
Final energy spread, rms	few %				
Final emittance	$\lesssim 10 \ \mu m$				

- Are there physics experiments that require an electron beam of up to *O(50 GeV)* ?
- Use bunches from SPS with 3.5 × 10¹¹ protons every ~ 5 s.
- Using the LHC beam as a driver, *TeV* electron beams are possible.

E. Adli (AWAKE Collaboration), IPAC 2016 proceedings, p.2557 (WEPMY008).

Possible physics experiments I

- Use of electron beam for test-beam campaigns.
 - Test-beam infrastructure for detector characterisation often oversubscribed.
 - Accelerator test facility. Also not many world-wide.
 - Characteristics:
 - Variation of energy.
 - Provide pure electron beam.
 - Short bunches.
- Fixed-target experiments using electron beams, e.g. deep inelastic electron –proton scattering.
 - Measurements at high *x*, momentum fraction of struck parton in the proton, with higher statistics than previous experiments.
 - Polarised beams and spin structure of the nucleon. The "proton spin crisis/ puzzle" is still a big unresolved issue.

Possible physics experiments II

• Search for dark photons à la NA64

- Consider beam-dump and counting experiments.

High energy electron-proton collider

- A low-luminosity LHeC-type experiment.
- A very high energy electron-proton collider.
- This is not a definitive list, but a quick brainstorm.
- Demonstrate that these experiments probe exciting areas of physics and will really profit from an AWAKE-like electron beam.

Experiments to search for the dark sector based on AWAKE scheme

The hidden / dark sector

- Baryonic (ordinary) matter constitutes ~5% of known matter.
 - What is the nature of dark matter? Why can we not see the dominant constituent of the Universe?
- LHC Run 1 (and previous high energy colliders) have found no dark matter candidates so far.
- LHC Run 2 to continue that search looking for heavy new particles such as those within supersymmetry.
- Also direct detection experiments looking for recoil from WIMPs
- There are models which postulate light (*GeV* and below) new particles which could be candidates for dark matter.
- There could be a dark sector which couples to ordinary matter via gravity and possibly other very weak forces.
- Could e.g. explain g-2 anomaly between measurement and the Standard Model.

Dark photons

A light vector boson, the "dark photon", A', results from a spontaneously broken new gauge symmetry, $U(1)_D$.

The A' kinetically mixes with the photon and couples primarily to the electromagnetic current with strength, ϵe

Growing field of experiments with many running or starting or proposed at JLab, SLAC, INFN, Mainz, etc.

Search for dark photons

- Several ways to look for dark photons:
 - A: bump-hunting, e.g. $e^+e^- \rightarrow \gamma A'$
 - B: displaced vertices, short decay lengths
 - C: displaced vertices, long decay lengths

J. Alexander et al., arXiv:1608.08632

- Search for dark photons, *A*', up to (and beyond) *GeV* mass scale via their production in a light-shining-through-a-wall type experiment.
- Use high energy electrons for beam-dump and/ or fixed-target experiments.

NA64 experimental programme

- NA64 have put forward a strong physics case to investigate the dark sector.
- See various papers/proposals from them.
- Initial run in SPS beam focusing on $A' \rightarrow invisible$ channel.
- Future programme measuring $A' \rightarrow e^+ e^-$ channel.
- Signature:
- Initial 100 GeV e⁻ track
- Final < 50 GeV e⁻ shower in ECAL

Electrons on target

NA64 will receive about $10^6 e^{-1}$ spill or $2 \times 10^5 e^{-1}$ s from SPS secondary beam

→ $N_e \sim 10^{12} e^-$ for 3 months running.

AWAKE-like beam with bunches of $10^9 e^-$ every (SPS cycle time of) ~ 5 s or 2 × $10^8 e^-/s$ (1000 × higher than NA64/SPS secondary beam)

→ $N_e \sim 10^{15} e^-$ for 3 months running.

Will assume that an AWAKE-like beam could provide an **effective upgrade** to the NA64 experiment, increasing the intensity by a factor of *1000*.

Different beam energies or higher intensities (e.g. bunch charge, SPS cycle time) may be possible, but are not considered in this talk.

Sensitivity with increased electrons on target

Have taken plots of mixing strength, ε , versus mass, $m_{A'}$, from NA64 studies/ proposals and added curves "by hand" to show increased sensitivity.

- Considered $A' \rightarrow e^+ e^-$ and $A' \rightarrow invisible$ channels.
- In general, but certainly at high m_{A'} (> 1 GeV) need more detailed calculations (developed in S.N. Gninenko et al., arXiv:1604.08432).
- More careful study of optimal beam energy needed.
- Evaluation of backgrounds needed; currently assume background-free for AWAKE-like beam.
- More careful study of possible detector configurations.
- Could consider other channels, e.g. $A' \rightarrow \mu^+ \mu^-$.
- For a beam-dump experiment (A' → e⁺ e⁻), high intensities possible; for a counting experiment (A' → invisible), need to cope/count high number of electrons on target.
- Results shown here should be considered as indicative.

Limits on dark photons, $A' \rightarrow invisible$ channel

Limits on dark photons, $A' \rightarrow e^+ e^-$

For $10^{10} - 10^{13}$ electrons on target with NA64.

For $10^{14} - 10^{16}$ electrons on target with AWAKE-like beam.

As proposed by NA64 group:

- extend into region not covered by current limits.
- similar to and complement other future experiments.

Using an AWAKE-like beam would extend sensitivity further around $\varepsilon \sim 10^{-5}$ beyond any current or planned experiment.

Electron-proton colliders based on AWAKE scheme

High energy electron-proton collisions

Energy scale or resolution, $Q^2 = -(k-k')^2$

Parton momentum fraction, x

- Deep inelastic scattering is the way to study the structure of matter.
- When does the complex structure "level out" or "saturate" ?
- Tells us a lot about the strong force: parton interactions, α_s , etc.
- Is there further partonic substructure ?

High energy electron-proton collisions

- Consider high energy *ep* collider with E_e up to O(50 GeV), colliding with LHC proton *TeV* bunch, e.g. $E_e = 10 \text{ GeV}$, $E_p = 7 \text{ TeV}$, $\sqrt{s} = 530 \text{ GeV}$.
- Can "easily" exceed HERA energies ($\sqrt{s} = 300 \text{ GeV}$); can consider different detector and probe different physics.
- Create ~50 GeV beam within 50-100 m of plasma driven by SPS protons and have an LHeC-type experiment.

LEP/LHC

SPS

- Little sensitivity to Higgs physics.
- Consider design further, e.g. increasing luminosity, understanding how to build a plasma accelerator, etc..

Layout 2

Very high energy electron-proton collisions, VHEeP*

A. Caldwell & K. Lotov, Phys. Plasmas 18 (2011) 103101

- What about very high energies in a completely new kinematic regime ?
- Choose $E_e = 3$ TeV as a baseline for a new collider with $E_P = 7$ TeV $\Rightarrow \sqrt{s} = 9$ TeV.
- Acceleration of electrons in under 4 km.
- Can vary the energy.
- Centre-of-mass energy ×30 higher than HERA.
- Reach in (high) Q^2 and (low) Bjorken x extended by ×1000 compared to HERA.

Plasma wakefield accelerator

$$\mathcal{L} \sim \frac{f \cdot N_e \cdot N_P}{4 \pi \sigma_x \cdot \sigma_y} \\ \sim 4 \times 10^{28} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$$

For few × 10^7 s, have $1 pb^{-1}$ / year of running.

Other schemes to increase this value ?

- Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.
- Overall layout works in powerpoint.

• Need high gradient magnets to bend protons into the LHC ring.

• One proton beam used for electron acceleration to then collider with other proton beam.

• High energies achievable and can vary electron beam energy.

- What about luminosity ?
- Assume
 - ~3000 bunches every 30 mins, gives $f \sim 2 Hz$.
 - $N_p \sim 4 \times 10^{11}$, $N_e \sim 1 \times 10^{11}$
 - $\sigma \sim 4 \ \mu m$

Physics case for very high energy, but moderate $(10-100 \text{ pb}^{-1})$ luminosities.

Kinematics of the final state

Sketch of detector

- Will need conventional central colliding-beam detector.
- Will also need long arm of spectrometer detectors which will need to measure scattered electrons and hadronic final state at low x.

Physics at VHEeP

• Measure total γP cross section at high energies and also at many different energies; relation to cosmic-ray physics.

- Vector meson production and its relation to the above.
- Cross sections at very low *x* and observation/evidence for saturation. Completely different kind of proton structure.
- Beyond the Standard Model physics; contact interactions, e.g. radius of quark and electron; search for leptoquarks.
- Proton and photon structure, in particular e.g. F_L given change in beam energy, and eA scattering. Also related to saturation and low *x*.
- Tests of QCD, measurements of strong coupling, etc.. I.e. all usual QCD measurements can and should be done too in a new kinematic regime.

• . . .

Total photon-proton cross section

Energy dependence of hadronic cross sections poorly understood.

- Multiple measurements can be made with low luminosities.
- When does the cross section stop rising ?
- Relation to cosmic-ray physics.
- Great example of where you really gain with energy.

Vector meson cross sections

Strong rise with energy related to gluon density at low x.

Can measure all particles within the same experiment.

Comparison with fixed-target, HERA and LHCb data—large lever-arm in energy.

At VHEeP energies, $\sigma(J/\psi) > \sigma(\phi)$!

Onset of saturation ?

A. Martin et al., Phys. Lett. **B 662** (2008) 252 36

Virtual-photon-proton cross section

- Again trying to understand energy dependence of hadronic cross sections.
- Cross sections for all Q² are rising; again luminosity not an issue, will have huge number of events.
- Contrast "red" and "blue".
- Note that blue predictions start to cross.
- Explore a region where QCD is not at all understood.

Leptoquark production

Electron-proton colliders are the ideal machine to look for leptoquarks.

s-channel resonance production possible up to \sqrt{s} .

ZEUS

$$\sigma^{\text{NWA}} = (J+1)\frac{\pi}{4s}\lambda^2 q(x_0, M_{\text{LQ}}^2)$$

Sensitivity depends mostly on \sqrt{s} and VHEeP = 30 × HERA

Also sensitive to quark substructure and possible to extract quark radius

ZEUS Coll., Phys. Rev. D 86 (2012) 012005

Leptoquark production at the LHC

Leptoquark production at VHEeP

Sensitivity up to kinematic limit, *9 TeV*. As expected, well beyond HERA limits and significantly beyond LHC limits.

Assumed $L \sim 100 \ pb^{-1}$

Required $Q^2 > 10,000 \text{ GeV}^2$ and y > 0.1

Generated "data" and Standard Model "prediction" using ARIADNE (no LQs).

Summary

- Plasma wakefield acceleration is a promising scheme for production of high energy electron beams.
- The AWAKE collaboration has an exciting programme of R&D aiming to make this a useable technology.
- Emphasis is on what can be done with a proton-driven scheme and using CERN infrastructure.
- Have started to consider applications to particle physics experiments:
 - Fixed-target/beam-dump experiments in particular those sensitive to dark photons.
 - Electron-proton collider up to very high energies.

Back-up

TABLE I: Summary of dark photon experiments.

From: arXiv:1608.08632

Experiment	Lab	Production	Detection	V_{ertex}	$M_{ m ass}(M{ m eV})$	$M_{ m ass} \; R_{ m es.} \; (M_{ m e} V)$	Be_{am}	$Ebeam~({ m GeV})$	Ibeam or Lumi	Machine	$1st\;Run$	$N\mathrm{ext}\;R\mathrm{un}$		
APEX	JLab	e-brem	$\ell^+\ell^-$	no	65 - 600	0.5%	<i>e</i> ⁻	1.1 - 4.5	150 μA	CEBAF(A)	2010	2018		
A1	Mainz	e-brem	e^+e^-	no	40 - 300	?	<i>e</i> ⁻	0.2–0.9	140 μ A	MAMI	2011	_		
HPS	JLab	e-brem	e^+e^-	yes	20 - 200	1–2	e^-	1–6	50–500 nA	CEBAF(B)	2015	2018		
DarkLight	JLab	e-brem	e^+e^-	no	< 80	?	e^-	0.1	10 mA	LERF	2016	2018		
MAGIX	Mainz	e-brem	e^+e^-	no	10 - 60	?	<i>e</i> ⁻	0.155	1 mA	MESA	2020	_		
NA64	CERN	e-brem	e^+e^-	no	1 - 50	?	<i>e</i> ⁻	100	$2 \times 10^{11} \text{ EOT/yr}$	SPS	2017	2022		
Super-HPS	SLAC	e-brem	vis	yes	< 500	?	<i>e</i> ⁻	4 - 8	$1 \ \mu A$	DASEL	?	?		
(TBD)	Cornell	e-brem	e^+e^-	?	< 100	?	e^-	0.1-0.3	100 mA	CBETA	?	?		
VEPP3	Budker	annih	invis	no	5-22	1	e^+	0.500	$10^{33}{ m cm}^{-2}{ m s}^{-1}$	VEPP3	2019	?		
PADME	Frascati	annih	invis	no	1 - 24	2 - 5	e^+	0.550	$\leq 10^{14} e^+ \mathrm{OT/y}$	Linac	2018	?		
MMAPS	Cornell	annih	invis	no	20 - 78	1 - 6	e^+	6.0	$10^{34}{ m cm}^{-2}{ m s}^{-1}$	Synchr	?	?		
KLOE 2	Frascati	several	vis/invis	no	$< 1.1{ m GeV}$	1.5	e^+e^-	0.51	$2\times 10^{32}{\rm cm}^{-2}{\rm s}^{-1}$	$\mathrm{DA}\phi\mathrm{NE}$	2014	-		
Belle II	KEK	several	vis/invis	no	$\lesssim 10{ m GeV}$	1 - 5	e^+e^-	4×7	$1 \sim 10 \text{ ab}^{-1}/\text{y}$	Super-KEKB	2018	-		
SeaQuest	FNAL	several	$\mu^+\mu^-$	yes	$\lesssim 10{\rm GeV}$	3 - 6%	р	120	10 ¹⁸ POT/y	MI	2017	2020		
SHIP	CERN	several	vis	yes	$\lesssim 10{\rm GeV}$	1 - 2	р	400	2×10^{20} POT/5y	SPS	2026	-		
LHCb	CERN	several	$\ell^+\ell^-$	yes	$\lesssim 40{ m GeV}$	~ 4	pp	6500	$\sim 10{\rm fb}^{-1}/{ m y}$	LHC	2010	2015		

BSM: Quark substructure

Deviations of the theory from the data for inclusive cross sections could hint towards quark substructure.

Extraction of quark radius has been done

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{\rm SM}}{dQ^2} \left(1 - \frac{R_e^2}{6}Q^2\right)^2 \left(1 - \frac{R_q^2}{6}Q^2\right)^2$$

Generate some "data" for VHEeP and look at sensitivity.

ZEUS Coll., DESY-16-035, accepted by Phys. Lett. B

Assuming the electron is point-like, HERA limit is $R_q < 4 \times 10^{-19} m$ Assuming the electron is point-like, VHEeP limit is $R_q \leq 10^{-20} m$

DIS variables

