



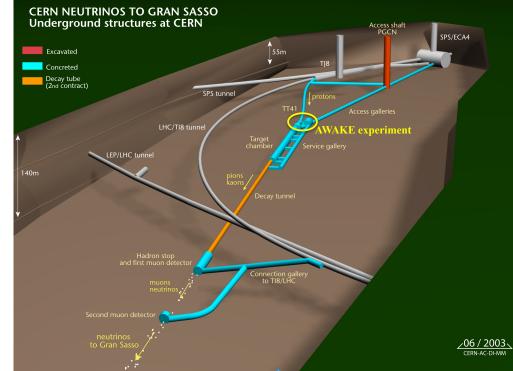
# An electron beam for physics experiments based on AWAKE scheme and relevance for EuPRAXIA

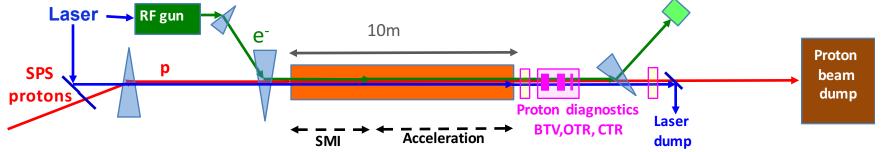
Matthew Wing (UCL / DESY)

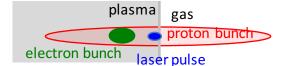
- Introduction and AWAKE
- Possible physics experiments
  - Search for dark photons, NA64-like
  - High energy electron-proton collisions, LHeC-like and VHEeP
- Summary and outlook



#### Introduction


- Presented first ideas on particle physics applications of AWAKE scheme at Physics Beyond Colliders Kick-Off Workshop, CERN, September 2016.
- This utilises current CERN infrastructure and beams to provide the accelerator system, in AWAKE's case using bunches of protons to accelerate electrons.
- There are various different techniques and some (ambitious) potential applications of plasma wakefield acceleration.
- Should first consider some realistic possibilities.
- Briefly present AWAKE programme and expected electron bunches to be produced.
- Present some ideas of experiments that could be done and significantly benefit from this.
- Happy to hear of other ideas of experiments that could utilise a high energy electron beam.
- These may be applications for an electron beam from EuPRAXIA too. Present the AWAKE applications and comment on their relevance to EuPRAXIA.
- Possible new projects need to have a novel and exciting physics programme.



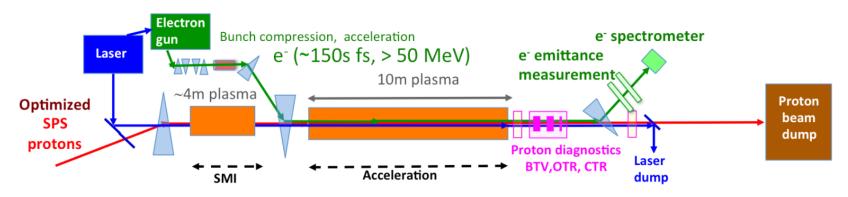




## AWAKE: proton driven plasma wakefield experiment

- Demonstration experiment to show effect for first time and obtain GV/m gradients.
- Use 400 GeV SPS proton bunches with high charge.
- To start running this year and first phase to continue to LS2.
- Apply scheme to particle physics experiments leading to shorter or higher energy accelerators.












#### **AWAKE Run 2**

- Preparing AWAKE Run 2, after LS2 and before LS3.
  - Accelerate electron bunch to higher energies.
  - Demonstrate beam quality preservation.
  - Demonstrate scalability of plasma sources.



#### Preliminary Run 2 electron beam parameters

| Parameter                | Value                        |  |  |  |  |
|--------------------------|------------------------------|--|--|--|--|
| Acc. gradient            | >0.5 GV/m                    |  |  |  |  |
| Energy gain              | 10 GeV                       |  |  |  |  |
| Injection energy         | $\gtrsim 50 \text{ MeV}$     |  |  |  |  |
| Bunch length, rms        | 40–60 μm (120–180 fs)        |  |  |  |  |
| Peak current             | 200–400 A                    |  |  |  |  |
| Bunch charge             | 67–200 pC                    |  |  |  |  |
| Final energy spread, rms | few %                        |  |  |  |  |
| Final emittance          | $\lesssim 10 \ \mu \text{m}$ |  |  |  |  |

- Are there physics experiments that require an electron beam of up to O(50 GeV)?
- Use bunches from SPS with 3.5 × 10<sup>11</sup> protons every ~ 5 s.
- Using the LHC beam as a driver, TeV electron beams are possible.

E. Adli (AWAKE Collaboration), IPAC 2016 proceedings, p.2557 (WEPMY008).



## Possible physics experiments I

- Use of electron beam for test-beam programmes.
  - Test-beam infrastructure for detector characterisation often over-subscribed.
  - Accelerator test facility. Also not many world-wide.
  - Characteristics
    - Variation of energy.
    - Provide pure electron beam.
    - Short bunches.
- Fixed-target experiments using electron beams, e.g. deep inelastic electron-proton/A scattering.
  - Measurements at high *x*, momentum fraction of struck parton in the proton, with higher statistics than previous experiments. Valuable for LHC physics.
  - Polarised beams and spin structure of the nucleon. The "proton spin crisis/puzzle" is a still a big unresolved issue.
  - Use of different targets and understanding the physics of that (Stodolsky).



## Possible physics experiments II

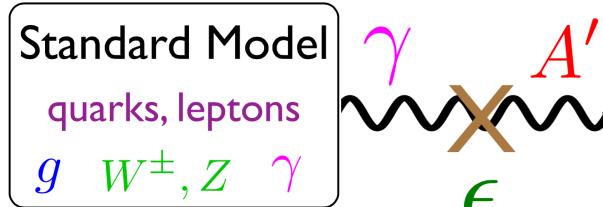
- Search for dark photons à la NA64
  - Consider beam-dump and counting experiments.
- High energy electron-proton collider
  - A low-luminosity LHeC-type experiment: ~50 GeV beam within 50−100 m of plasma driven by SPS protons; low luminosity, but much more compact.
  - A very high energy electron–proton (VHEeP) collider with  $\sqrt{s} = 9$  *TeV,* ×30 higher than HERA. Developing physics programme\*.

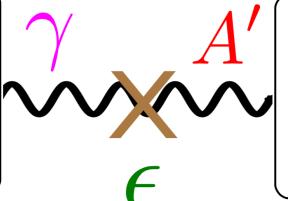
This is not a definitive list, but a quick brainstorm.

Demonstrate that these experiments probe exciting areas of physics and will really profit from an AWAKE-like beam.



#### The hidden / dark sector


- Baryonic (ordinary) matter constitutes ~5% of known matter.
  - What is the nature of dark matter? Why can we not see the dominant constituent of the Universe?
- LHC Run 1 (and previous high energy colliders) have found no dark matter candidates so far.
- LHC Run 2 to continue that search looking for heavy new particles such as those within supersymmetry.
- Also direct detection experiments looking for recoil from WIMPs
- There are models which postulate light (*GeV* and below) new particles which could be candidates for dark matter.
- There could be a dark sector which couples to ordinary matter via gravity and possibly other very weak forces.
- Could e.g. explain g-2 anomaly between measurement and the Standard Model.




## Dark photons

A light vector boson, the "dark photon", A', results from a spontaneously broken new gauge symmetry,  $U(1)_D$ .

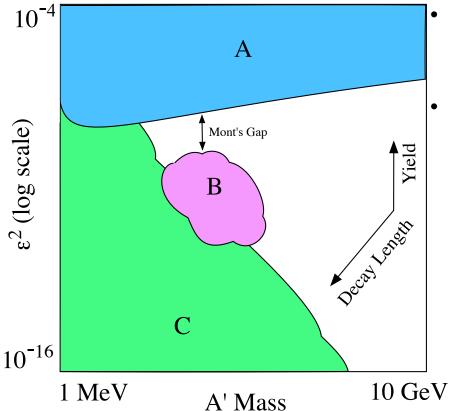
The A' kinetically mixes with the photon and couples primarily to the electromagnetic current with strength, εe



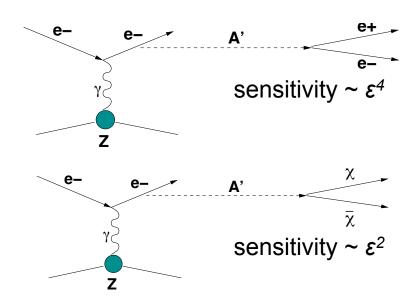


Hidden Sector dark matter?

A' (massive)


$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

Growing field of experiments with many running or starting or proposed at JLab, SLAC, INFN, Mainz, etc.




## Search for dark photons

- Several ways to look for dark photons:
  - A: bump-hunting, e.g. e<sup>+</sup>e<sup>-</sup> → γA'
  - B: displaced vertices, short decay lengths
  - C: displaced vertices, long decay lengths



- Search for dark photons, A', up to (and beyond)
   GeV mass scale via their production in a lightshining-through-a-wall type experiment.
- Use high energy electrons for beam-dump and/ or fixed-target experiments.





## NA64 experimental programme

NA64 have put forward a strong physics case to investigate the dark sector.

See various papers/proposals from them.

Initial run in SPS beam focusing on  $A' \rightarrow invisible$  channel.

Future programme measuring  $A' \rightarrow e^+ e^-$  channel.

#### Signature:

e-, 50 - 150 GeV

- Initial 100 GeV e<sup>-</sup> track
- Final < 50 GeV e<sup>-</sup> shower in ECAL



NA64 detector for  $A' \rightarrow invisible$  channel.

Backgrounds essentially zero.

MUON3

Similar detector for  $A' \rightarrow e^+ e^-$  channel with signature of two EM showers after gap when initial  $e^-$  hits target.



## **Electrons on target**

NA64 will receive about  $10^6$  e<sup>-</sup>/spill or  $2 \times 10^5$  e<sup>-</sup>/s from SPS secondary beam

→  $N_e$  ~  $10^{12}$  e<sup>-</sup> for 3 months running.

AWAKE-like beam with bunches of  $10^9$  e<sup>-</sup> every (SPS cycle time of) ~ 5 s or 2 ×  $10^8$  e<sup>-</sup>/s (1000 × higher than NA64/SPS secondary beam)

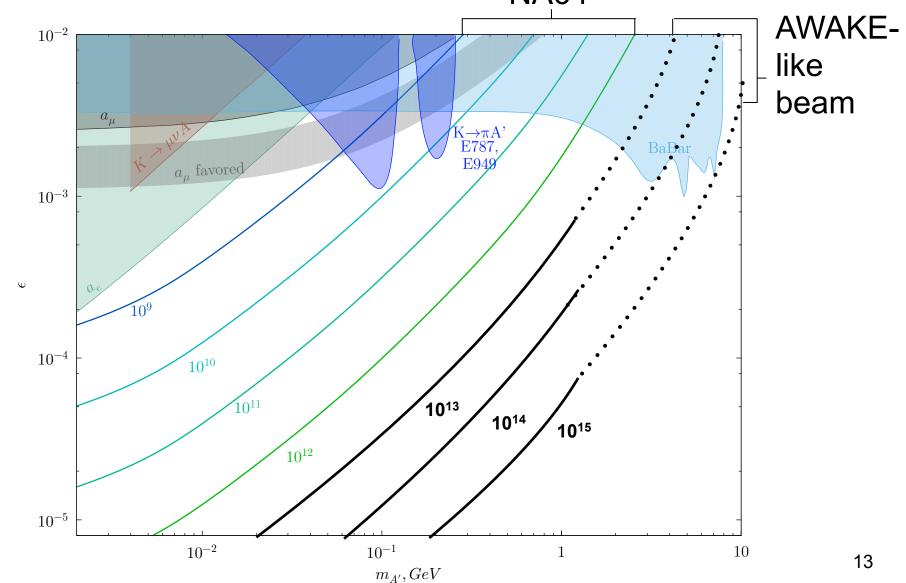
→  $N_e \sim 10^{15} e^-$  for 3 months running.

Will assume that an AWAKE-like beam could provide an **effective upgrade** to the NA64 experiment, increasing the intensity by a factor of 1000.

Different beam energies or higher intensities (e.g. bunch charge, SPS cycle time) may be possible, but are not considered in this talk.

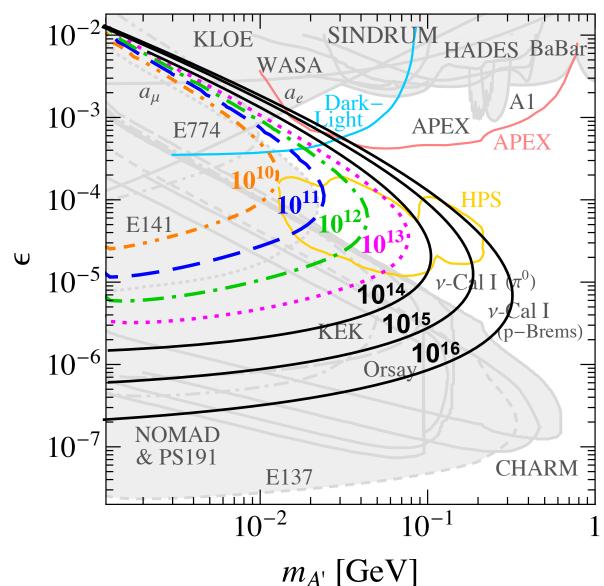


# Sensitivity with increased electrons on target


Have taken plots of mixing strength,  $\varepsilon$ , versus mass,  $m_{A'}$ , from NA64 studies/proposals and added curves "by hand" to show increased sensitivity.

- Considered  $A' \rightarrow e^+ e^-$  and  $A' \rightarrow invisible$  channels.
- In general, but certainly at high  $m_{A'}$  (> 1 GeV) need more detailed calculations (developed in S.N. Gninenko et al., arXiv:1604.08432).
- More careful study of optimal beam energy needed.
- Evaluation of backgrounds needed; currently assume background-free for AWAKE-like beam.
- More careful study of possible detector configurations.
- Could consider other channels, e.g.  $A' \rightarrow \mu^+ \mu^-$ .
- For a beam-dump experiment  $(A' \rightarrow e^+ e^-)$ , high intensities possible; for a counting experiment  $(A' \rightarrow invisible)$ , need to cope/count high number of electrons on target.

Results shown here should be considered as indicative.




Limits on dark photons, A' → invisible channel NA64





## Limits on dark photons, $A' \rightarrow e^+ e^-$



For  $10^{10} - 10^{13}$  electrons on target with NA64.

For  $10^{14} - 10^{16}$  electrons on target with AWAKE-like beam.

As proposed by NA64 group:

- extend into region not covered by current limits.
- similar to and complement other future experiments.

Using an AWAKE-like beam would extend sensitivity further around  $\varepsilon \sim 10^{-5}$  beyond any current or planned experiment.



#### Relation to EuPRAXIA I

For fixed-target electron-proton/A experiments:

- Beam energy is low, so  $Q^2$  is low, e.g.  $E_e = 5$  GeV gives  $\sqrt{s} \sim 3$  GeV and  $Q^2 < 10$  GeV<sup>2</sup>.
- Can still go to high x and use different targets.
- Spin physics may still be interesting.
- Would need to be assessed: survey of previous experiments, conditions needed, design, potential for new experiments and physics motivation.



#### Relation to EuPRAXIA II

#### On the search for dark photons:

- Again the beam energy is lower than for NA64 and application of AWAKE scheme, but:
  - Looking for sub-GeV particles;
  - Several other projects, e.g. JLab, Mainz, etc., using/considering low energy electron beams;
  - Need to assess optimal energy and competitiveness with other experiments.
- The bunch charge is similar to that for AWAKE scheme and repetition rate is higher.
  - More electrons on target means higher sensitivity to new physics.
  - 200 × 10<sup>6</sup> e− at 10 Hz is 2 × 10<sup>9</sup> e−/s, a factor of 10 higher than default AWAKE scheme.
  - 600 × 10<sup>6</sup> e− at 100 Hz is 6 × 10<sup>10</sup> e−/s, a factor of 300 higher than default AWAKE scheme.
  - For a beam-dump experiment, this higher rate may be manageable; for a fixed-target experiment, more challenging to count and measure incoming electrons.
- Work and studies needed.



## **Summary**

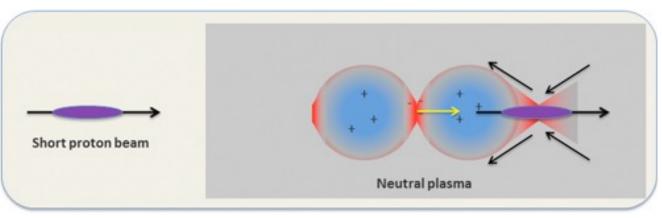
- Plasma wakefield acceleration is a promising scheme for production of high energy electron beams.
- Considering HEP possibilities using AWAKE scheme and CERN infrastructure.
- Some of the ideas may be applicable to EuPRAXIA and a lower-energy electron beam.
  - Experiments in deep inelastic scattering are possible; physics case needs to be developed.
  - Fixed-target/beam-dump experiments in particular those sensitive to dark photons have a strong physics case; studies needed.
- Ideas should have a strong particle physics case and be realisable; certainly the dark photon search fits that.
- Work and studies are needed to develop these possibilities.

# Back-up



From: arXiv:1608.08632

TABLE I: Summary of dark photon experiments.


|            |          |            |                |                      |                           |                     |                | of dail photon experiments. |                                                      |                              |         |            |  |  |
|------------|----------|------------|----------------|----------------------|---------------------------|---------------------|----------------|-----------------------------|------------------------------------------------------|------------------------------|---------|------------|--|--|
| Experiment | Lab      | Production | Detection      | $V_{ m erte}_{ m x}$ | Mass(MeV)                 | $Mass\ Res.\ (MeV)$ | Beam           | $Ebeam \; (GeV)$            | Ibeam or Lumi                                        | Machine                      | 1st~Run | Next $Run$ |  |  |
| APEX       | JLab     | e-brem     | $\ell^+\ell^-$ | no                   | 65 - 600                  | 0.5%                | $e^-$          | 1.1–4.5                     | $150~\mu\mathrm{A}$                                  | CEBAF(A)                     | 2010    | 2018       |  |  |
| A1         | Mainz    | e-brem     | $e^+e^-$       | no                   | 40 - 300                  | ?                   | $e^-$          | 0.2–0.9                     | $140~\mu\mathrm{A}$                                  | MAMI                         | 2011    | _          |  |  |
| HPS        | JLab     | e-brem     | $e^+e^-$       | yes                  | 20 - 200                  | 1–2                 | $e^-$          | 1–6                         | 50–500 nA                                            | CEBAF(B)                     | 2015    | 2018       |  |  |
| DarkLight  | JLab     | e-brem     | $e^+e^-$       | no                   | < 80                      | ?                   | $e^-$          | 0.1                         | 10 mA                                                | LERF                         | 2016    | 2018       |  |  |
| MAGIX      | Mainz    | e-brem     | $e^+e^-$       | no                   | 10 - 60                   | ?                   | e <sup>-</sup> | 0.155                       | 1 mA                                                 | MESA                         | 2020    | -          |  |  |
| NA64       | CERN     | e-brem     | $e^+e^-$       | no                   | 1 - 50                    | ?                   | $e^-$          | 100                         | $2 \times 10^{11} \; \mathrm{EOT/yr}$                | SPS                          | 2017    | 2022       |  |  |
| Super-HPS  | SLAC     | e-brem     | vis            | yes                  | < 500                     | ?                   | $e^-$          | 4 - 8                       | $1~\mu\mathrm{A}$                                    | DASEL                        | ?       | ?          |  |  |
| (TBD)      | Cornell  | e-brem     | $e^+e^-$       | ?                    | < 100                     | ?                   | $e^-$          | 0.1-0.3                     | 100 mA                                               | CBETA                        | ?       | ?          |  |  |
| VEPP3      | Budker   | annih      | invis          | no                   | 5 - 22                    | 1                   | $e^+$          | 0.500                       | $10^{33}\mathrm{cm^{-2}s^{-1}}$                      | VEPP3                        | 2019    | ?          |  |  |
| PADME      | Frascati | annih      | invis          | no                   | 1 - 24                    | 2-5                 | $e^+$          | 0.550                       | $\leq 10^{14} e^+ \mathrm{OT/y}$                     | Linac                        | 2018    | ?          |  |  |
| MMAPS      | Cornell  | annih      | invis          | no                   | 20 - 78                   | 1 - 6               | $e^+$          | 6.0                         | $10^{34}\mathrm{cm^{-2}s^{-1}}$                      | Synchr                       | ?       | ?          |  |  |
| KLOE 2     | Frascati | several    | vis/invis      | no                   | < 1.1 GeV                 | 1.5                 | $e^+e^-$       | 0.51                        | $2 \times 10^{32}  \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | $\mathrm{DA}\phi\mathrm{NE}$ | 2014    | -          |  |  |
| Belle II   | KEK      | several    | vis/invis      | no                   | $\lesssim 10{\rm GeV}$    | 1 - 5               | $e^+e^-$       | 4 × 7                       | $1 \sim 10~\mathrm{ab^{-1}/y}$                       | Super-KEKB                   | 2018    | -          |  |  |
| SeaQuest   | FNAL     | several    | $\mu^+\mu^-$   | yes                  | $\lesssim 10\mathrm{GeV}$ | 3-6%                | p              | 120                         | $10^{18} 	ext{ POT/y}$                               | MI                           | 2017    | 2020       |  |  |
| SHIP       | CERN     | several    | vis            | yes                  | $\lesssim 10{\rm GeV}$    | 1 - 2               | p              | 400                         | $2 \times 10^{20} \text{ POT/5y}$                    | SPS                          | 2026    | -          |  |  |
| LHCb       | CERN     | several    | $\ell^+\ell^-$ | yes                  | $\lesssim 40{\rm GeV}$    | ~ 4                 | pp             | 6500                        | $\sim 10{\rm fb^{-1}/y}$                             | LHC                          | 2010    | 2015       |  |  |



#### Plasma wakefield acceleration

Accelerators using RF cavities limited to ~100 MV/m; high energies  $\Rightarrow$  long accelerators. Gradients in plasma wakefield acceleration of ~100 GV/m measured.

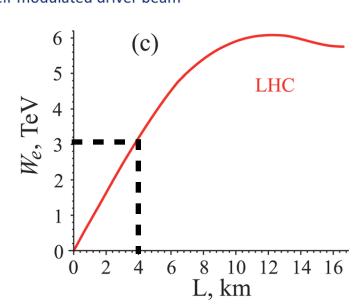
#### Proton-driven plasma wakefield acceleration\*



- Electrons 'sucked in' by proton bunch
- Continue across axis creating depletion region
- Transverse electric fields focus witness bunch
- Theory and simulation tell us that with CERN proton beams, can get GV/m gradients.
- Experiment, AWAKE, at CERN to demonstrate proton-driven plasma wakefield acceleration for this first time.
  - Learn about characteristics of plasma wakefields.
  - Understand process of accelerating electrons in wakes.
  - This will inform future possibilities which we, however, can/should think of now.

<sup>\*</sup> A. Caldwell *et al.*, Nature Physics **5** (2009) 363.



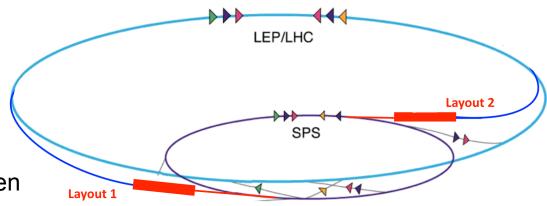

# Plasma wakefield accelerator (AWAKE scheme)

#### Long proton beam

- Long beam modulated into microbunches which constructively reinforce to give large wakefields.
- Self-modulation instability allows **current beams to be used**, as in AWAKE experiment at CERN.
- With high accelerating gradients, can have
  - Shorter colliders for same energy
  - Higher energy
- Using the LHC beam can accelerate electrons up to 6 TeV over a reasonable distance.
- We choose  $E_e = 3 \text{ TeV}$  as a baseline for a new collider with  $E_P = 7 \text{ TeV} \Rightarrow \sqrt{\mathbf{s}} = \mathbf{9} \text{ TeV}$ .
  - Centre of mass energy ×30 higher than HERA.

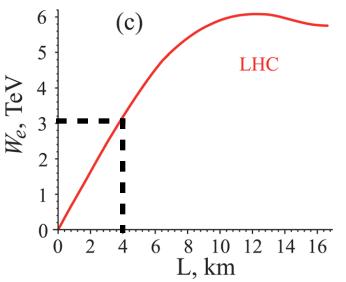


Neutral plasma



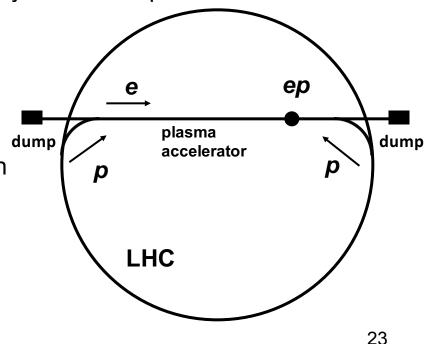

A. Caldwell & K. Lotov, Phys. Plasmas **18** (2011) 103101




## High energy electron-proton collisions

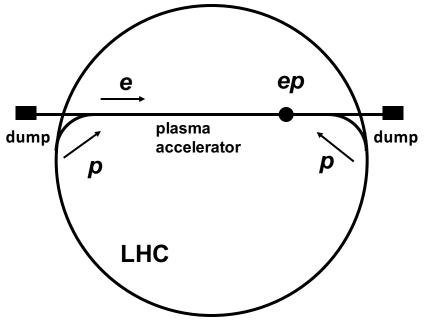
- Consider high energy *ep* collider with  $E_e$  up to O(50 GeV), colliding with LHC proton *TeV* bunch, e.g.  $E_e = 10 \text{ GeV}$ ,  $E_p = 7 \text{ TeV}$ ,  $\sqrt{s} = 530 \text{ GeV}$ .
- Create ~50 GeV beam within 50−100 m of plasma driven by SPS protons and have an LHeC-type experiment.
- Clear difference is that luminosity\* currently expected to be lower ~10<sup>30</sup> cm<sup>-2</sup>s<sup>-1</sup>.
- Any such experiment would have a different focus to LHeC.
  - Investigate physics at low Bjorken *x*, e.g. saturation.
  - Parton densities, diffraction, jets, etc..
  - eA as well as ep physics.
- Opportunity for further studies to consider the design of a collider using this plasma wakefield acceleration scheme and leading to an experiment in a new kinematic regime.




# **≜UCL**

## Very high energy electron-proton collisions, VHEeP\*




- What about very high energies in a completely new kinematic regime ?
- Choose  $E_e = 3 \text{ TeV}$  as a baseline for a new collider with  $E_P = 7 \text{ TeV} \Rightarrow \sqrt{\mathbf{s}} = \mathbf{9} \text{ TeV}$ . Can vary.
  - Centre-of-mass energy ×30 higher than HERA.
  - Reach in (high)  $Q^2$  and (low) Bjorken x extended by ×1000 compared to HERA.
- A. Caldwell & K. Lotov, Phys. Plasmas 18 (2011) 103101
- Overall (simple) layout using current infrastructure.
- One proton beam used for electron acceleration to then collide with other proton beam
- Luminosity  $\sim 10^{28} 10^{29} \text{ cm}^{-2}\text{s}^{-1} \text{ gives } \sim 1 \text{ pb}^{-1}$  per year

Physics case for very high energy, but moderate ( $10-100 \text{ pb}^{-1}$ ) luminosities.



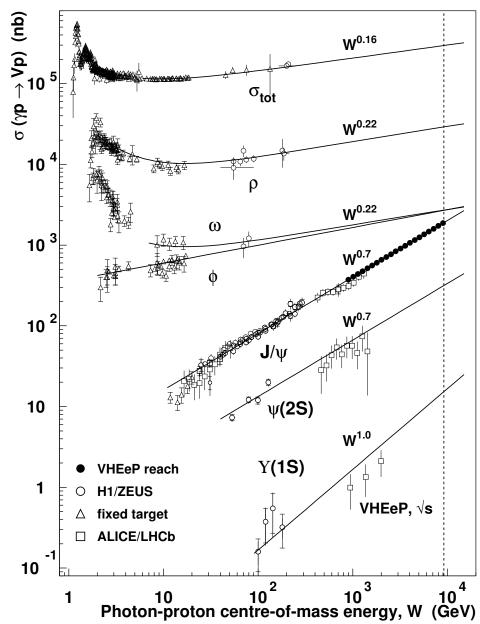


#### Plasma wakefield accelerator



$$\mathcal{L} \sim \frac{f \cdot N_e \cdot N_P}{4 \pi \sigma_x \cdot \sigma_y}$$
$$\sim 4 \times 10^{28} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$$

For few  $\times$  10<sup>7</sup> s, have 1 pb<sup>-1</sup> / year of running.


Other schemes to increase this value?

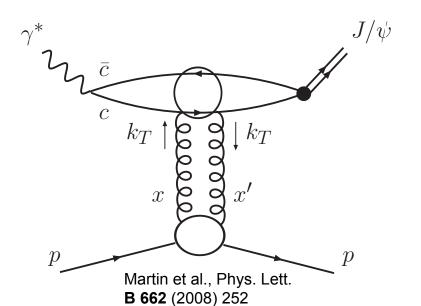
- Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.
- Overall layout works in powerpoint.
- Need high gradient magnets to bend protons into the LHC ring.
- One proton beam used for electron acceleration to then collider with other proton beam.
- High energies achievable and can vary electron beam energy.
- What about luminosity?
- Assume
  - ~3000 bunches every 30 mins, gives  $f \sim 2 Hz$ .
  - $N_p \sim 4 \times 10^{11}$ ,  $N_e \sim 1 \times 10^{11}$
  - $\sigma \sim 4 \mu m$

Physics case for very high energy, but moderate (10-100 pb<sup>-1</sup>) luminosities. 24



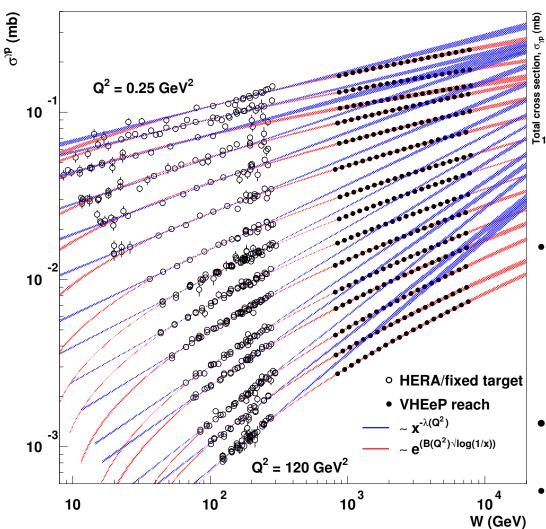
#### **Vector meson cross sections**

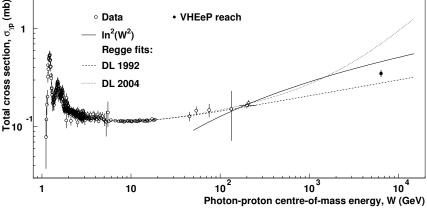



Strong rise with energy related to gluon density at low *x*.

Can measure all particles within the same experiment.

Comparison with fixed-target, HERA and LHCb data—large lever in energy.


At VHEeP energies,  $\sigma(J/\psi) > \sigma(\varphi)$ !


Onset of saturation?





## Very high energy electron-proton collisions, VHEeP

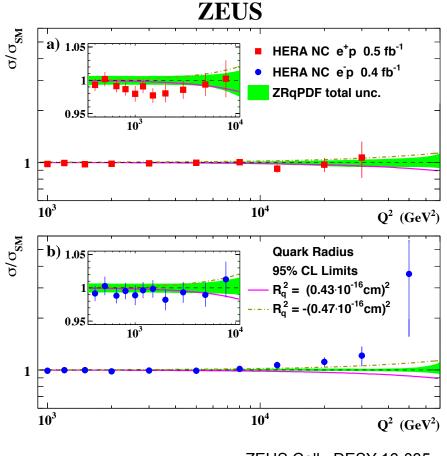




- Energy dependence of hadronic cross sections poorly understood.
  - Large lever arm at VHEeP.
  - Relation to cosmic-ray physics.
  - Onset of saturation?
- Explore a region where QCD is not at all understood.
- Also strongly sensitive to leptoquarks and much else.

To organise a workshop to better understand the physics case and feasibility.




#### **BSM: Quark substructure**

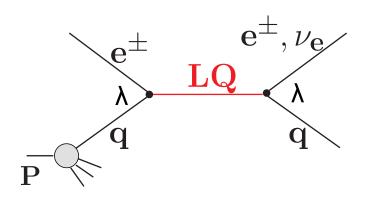
Deviations of the theory from the data for inclusive cross sections could hint towards quark substructure.

Extraction of quark radius has been done

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 - \frac{R_e^2}{6} Q^2\right)^2 \left(1 - \frac{R_q^2}{6} Q^2\right)^2$$

Generate some "data" for VHEeP and look at sensitivity.



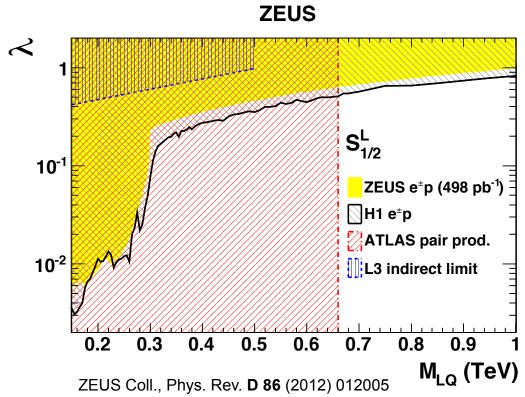

ZEUS Coll., DESY-16-035, accepted by Phys. Lett. B

Assuming the electron is point-like, HERA limit is  $R_q < 4 \times 10^{-19} \text{ m}$ 

Assuming the electron is point-like, VHEeP limit is  $R_q \le 10^{-20} m$ 

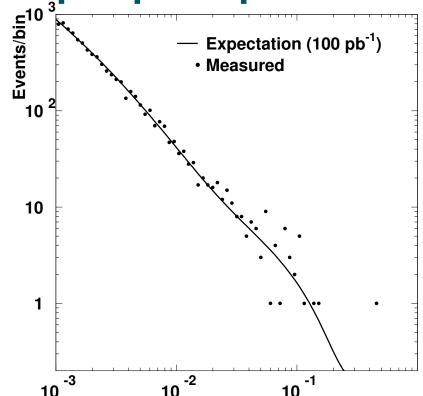


## Leptoquark production




Electron-proton colliders are the ideal machine to look for leptoquarks.

s-channel resonance production possible up to  $\sqrt{s}$ .


$$\sigma^{\text{NWA}} = (J+1)\frac{\pi}{4s}\lambda^2 q(x_0, M_{\text{LQ}}^2)$$

Sensitivity depends mostly on  $\sqrt{s}$  and VHEeP = 30 × HERA





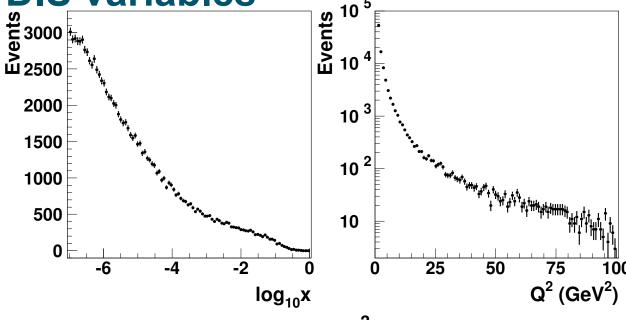
## Leptoquark production at VHEeP



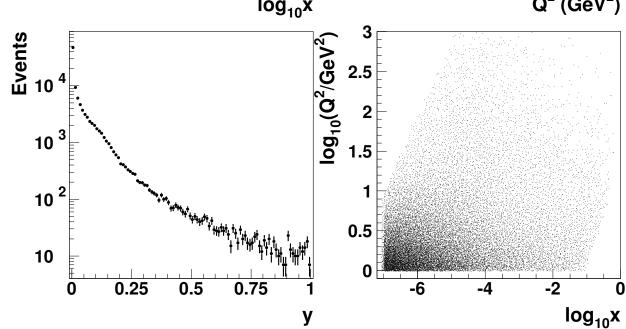
Sensitivity up to kinematic limit, 9 TeV.

As expected, well beyond HERA limits and significantly beyond LHC limits and potential.

Assumed  $L \sim 100 \text{ pb}^{-1}$ 

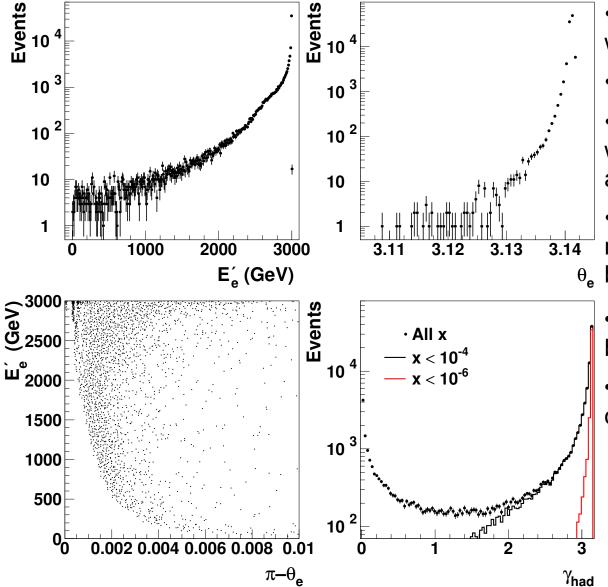

Required  $Q^2 > 10,000 \text{ GeV}^2$  and y > 0.1

Generated "data" and Standard Model "prediction" using ARIADNE (no LQs).





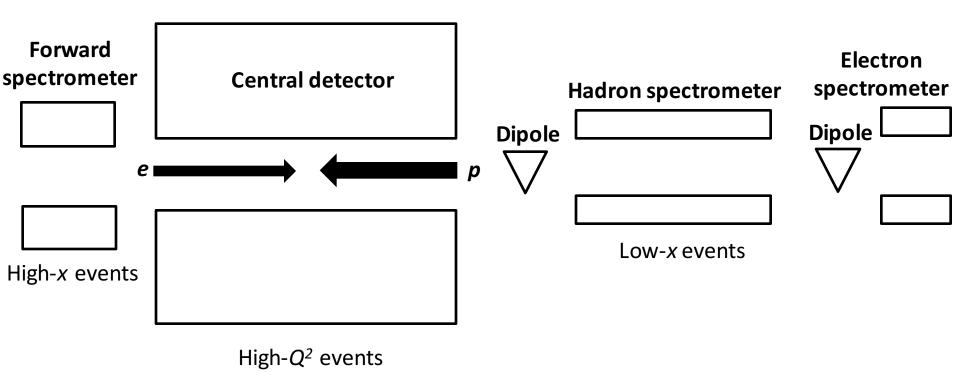

#### **DIS** variables




- Access down to  $x \sim 10^{-8}$  for  $Q^2 \sim 1 \ GeV^2$ .
- Even lower x for lower  $Q^2$ .
- Plenty of data at low x and low  $Q^2$  ( $L \sim 0.01 \text{ pb}^{-1}$ ).
- Can go to  $Q^2 \sim 10^5 \text{ GeV}^2$  for  $L \sim 1 \text{ pb}^{-1}$ .
- Powerful experiment for low-x physics where luminosity less crucial.






#### Kinematics of the final state



- Generated ARIADNE events with  $Q^2 > 1 \text{ GeV}^2$  and  $x > 10^{-7}$
- Test sample of  $L \sim 0.01 \text{ pb}^{-1}$
- Nice kinematic peak at 3 TeV, with electrons scattered at low angles.
- Hadronic activity in central
   region as well as forward and
   θ<sub>a</sub> backward.
  - Hadronic activity at low backward angles for low x.
  - Clear implications for the kind of detector needed.



#### Sketch of detector



- Will need conventional central colliding-beam detector.
- Will also need long arm of spectrometer detectors which will need to measure scattered electrons and hadronic final state at low x.