Micro-bunching Conventional Particle Beams To Drive Plasma Wakefield Acceleration

James Holloway University College London, London, UK

PhD Supervisors: Professor Matthew Wing

University College London, London, UK

Professor Peter Norreys

University of Oxford, Oxfordshire, UK Central Laser Facility, Rutherford Appleton Laboratory, UK

Synchrotron Facilities Worldwide DESY ESE 💮 🚟 ANK SELEIL HZB. MAX-lab diamond U elettra 3 HISC Argonne SPring ⋜⊢⊣∥ nsls SINAP Australian Synchrotron INDUSi & SLRI INDUSII

Image Source: http://www.veqter.co.uk/residual-stress-measurement/synchrotron-diffraction

Image Source: http://www.veqter.co.uk/residual-stress-measurement/synchrotron-diffraction

Image Source: http://www.veqter.co.uk/residual-stress-measurement/synchrotron-diffraction

The Goal

- Use existing facilities' beams to drive PWA
- Accelerate higher energy beams from PWA
- Generate harder X-rays from 3rd generation light sources

The Problem

- These beams are too long to drive effective wakefields
- Existing beam lines have limited space
- Longitudinal compression via magnetic chicanes takes considerable space and expense

$$\sigma_{ideal} = \lambda_p / (\pi \sqrt{2})$$

Need beam lengths of:

 $\sigma_z < 1 \text{ mm}$

The Solution

• Micro-bunch beams to make them an effective wakefield driver

Micro-Bunching Via Self Modulation

- Seed instability
- Wakefield modulates beam
- Beam drives harder wakefield
- Feedback mechanism
- Takes time for instability to saturate

This is not the scheme I use

Micro-bunched beam.

Micro-Bunching Via Wakefield Kick and Drift Space

- Strong transverse kick
 from laser wakefield
- Propagate beam
 through vacuum
- Pass micro-bunches into second plasma stage when on-axis number density maximised

Micro-bunched driver beam.

The 'Drift Space' Design

Beam number density. 51 mm of propagation

Beam number density. 51 mm of propagation

Beam number density. 200 mm of propagation

Effects of First Cell length

The Diamond Light Source

The Diamond light source at RAL uses a 3 GeV electron beam to generate soft x-rays.

```
Beam length: \sigma_z = 26 \text{ mm}
```

```
Too long to effectively drive a wakefield!
(\lambda_p \sim O(100 \text{ um})).
```

A proof of principle experiment has been proposed

to micro-bunch the beam using a laser-driven wakefield. The beam can then drive a PWA to:

- Create a higher energy electron beam
- Create a poor mans FEL using betatron oscillations within the wake

- E = 3 GeV
- ε = 140 nm rad
- $\sigma_z = 26 \text{ mm}$
- Q = 2 nC

Storage Ring

1

Pictures by Michael Bloom, Imperial College.

Diamond Conceptual Layout

6 meter of beam line space available

Diamond Beam Parameters

- E = 3 GeV
- $\varepsilon_p = 140 \text{ nm mrad}$
- $\sigma_{\rm E}$ / E = 0.0007
- $\sigma_z = 2.6 \text{ cm}$
- Q = 2 nC

HP Ultra Short Laser

- λ = 1.06 um
- $\sigma_r = 20 \text{ um}$
- E = 1 J
- I = 1e16 Wcm⁻²
- $\tau = 50 \, \text{fs}$

Plasma Parameters

- Ne = 1.11e23 cm⁻³
- $\lambda_p = 100 \text{ um}$
- Element = Xenon
- Cell = ~Discharge

Diamond beam micro-bunched by 1 GVm⁻¹ WF

The Catch With Long Beams: Ion Motion Plasma density scan vs amplitude of wakefield driven for the Diamond beam with ideal microbunching applied.

Can alleviate with high Z plasmas Plasma density scan vs amplitude of wakefield driven for the Diamond beam with ideal microbunching applied.

Acknowledgements

Professor Matthew Wing

University College London, London, UK

Professor Peter Norreys

University of Oxford, Oxfordshire, UK Central Laser Facility, Rutherford Appleton Laboratory, UK

Professor Robert Bingham

University of Strathclyde, Glasgow, UK Central Laser Facility, Rutherford Appleton Laboratory, UK

Doctor Raoul Trines

Central Laser Facility, Rutherford Appleton Laboratory, UK

Computing resources provided by STFC's e-Science facility, SCARF

Concluding

- Many existing particle beams out there
- Can treat these beams and make them suitable to drive PWA
- Two-stage Drift-space design achieves this over short distances
- PWA can generate higher energy electrons and in turn generate harder Xrays form existing infrastructure
- PWA can generate X-rays directly from betatron oscillations
- Ion motion is a problem!

Thank you for listening